423
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

pH-sensitive chitosan-deoxycholic acid/alginate nanoparticles for oral insulin delivery

, , ORCID Icon, , &
Pages 943-952 | Received 03 Sep 2020, Accepted 05 Aug 2021, Published online: 18 Aug 2021

References

  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. 2010. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 62(1):59–82.
  • Artursson P, Lindmark T, Davis SS, Illum L. 1994. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 11(9):1358–1361.
  • Chaturvedi K, Ganguly K, Kulkarni AR, Rudzinski WE, Krauss L, Nadagouda MN, Aminabhavi TM. 2015. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine. 10(10):1569–1583.
  • Chen TT, Li SY, Zhu WT, Liang Z, Zeng QB. 2019. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul. 36(1):96–107.
  • Chen XY, Ren YS, Feng Y, Xu XY, Tan H, Li JS. 2019. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 562:23–30.
  • Cui M, Wu W, Hovgaard L, Lu Y, Chen DW, Qi JP. 2015. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int J Pharm. 489(1–2):277–284.
  • Dusseault J, Leblond FA, Robitaille R, Jourdan G, Tessier J, Ménard M, Henley N, Hallé JP. 2005. Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials. (13)26:1515–1522.
  • Elsayed A, Al-Remawi M, Qinna N, Farouk A, Al-Sou'od KA, Badwan AA. 2011. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin. AAPS PharmSciTech. 12(3):958–964.
  • Fan WW, Xia DN, Zhu QL, Li XY, He SF, Zhu CL, Guo SY, Hovgaard L, Yang MS, Gan Y. 2018. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 151:13–23.
  • Fox CB, Cao Y, Nemeth CL, Chirra HD, Chevalier RW, Xu AM, Melosh NA, Desai TA. 2016. Fabrication of sealed nanostraw microdevices for oral drug delivery. ACS Nano. 10(6):5873–5881.
  • Frokjaer S, Otzen DE. 2005. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 4(4):298–306.
  • Goldberg M, Gomez Orellana I. 2003. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2(4):289–295.
  • Goycoolea FM, Lollo G, Remunan López C, Quaglia F, Alonso MJ. 2009. Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules. 10(7):1736–1743.
  • Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. 2013. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 20(6):237–246.
  • Jan D, Mieke VG, Gerrit LS. 1984. Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by kupffer cells in vitro. Biochim Biophys Acta. 804:58–67.
  • Jean-Louis S, Akare S, Ali MA, Mash EA, Meuillet E, Martinez JD. 2006. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem. 281(21):14948–14960.
  • Joshi GV, Patel HA, Kevadiya BD, Bajaj HC. 2009. Montmorillonite intercalated with vitamin B1 as drug carrier. Appl Clay Sci. 45(4):248–253.
  • Kean T, Thanou M. 2010. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 62(1):3–11.
  • Kevadiya BD, Josh GV, Bajaj HC. 2010. Layered bionanocomposites as carrier for procainamide. Int J Pharm. 388(1–2):280–286.
  • Lakkireddy HR, Urmann M, Besenius M, Werner U, Haack T, Brun P, Alié J, Illel B, Hortala L, Vogel R, et al. 2016. Oral delivery of diabetes peptides – comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev. 106(Pt B):196–222.
  • Lee KY, Kim JH, Kwon IC, Jeong SY. 2000. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin. Colloid Polym Sci. 278(12):1216–1219.
  • Lee S, Kim K, Kumar TS, Lee J, Kim SK, Lee DY, Lee Y-k, Byun Y. 2005. Synthesis and biological properties of insulin-deoxycholic acid chemical conjugates. Bioconjug Chem. 16(3):615–620.
  • Li XY, Yu M, Fan WW, Gan Y, Hovgaard L, Yang MS. 2014. Orally active-targeted drug delivery systems for proteins and peptides. Expert Opin Drug Deliv. 11(9):1435–1447.
  • Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong JJ, Zhang ZR, Huang Y. 2016. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 222:67–77.
  • Luessen HL, De Leeuw BJ, Langemeÿer MW, De Boer AB, Verhoef JC, Junginger HE. 1996. Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm Res. 13(11):1668–1672.
  • Mahmood SJ, Siddique A. 2010. Ionic studies of sodium alginate isolated from sargassum terrarium (brown algea) karachi coast wit 2,1-electrolyte. J Saudi Chem Soc. 14(1):117–123.
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. 2015. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol. 72:640–648.
  • Mukhopadhyay P, Sarkar K, Chakraborty M, Bhattacharya S, Mishra R, Kundu PP. 2013. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl. 33(1):376–382.
  • Nagpal K, Singh SK, Mishra DN. 2010. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull. 58(11):1423–1430.
  • Niu Z, Conejos-Sánchez I, Griffin BT, O'Driscoll CM, Alonso MJ. 2016. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 106 (Pt B):337–354.
  • Park JH, Saravanakumar G, Kim K, Kwon IC. 2010. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 62(1):28–41.
  • Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, Byun Y. 2004. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir. 20(26):11726–11731.
  • Pasparakis G, Bouropoulos N. 2006. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. Int J Pharm. 323(1–2):34–42.
  • Poole B, Ohkuma S. 1981. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 90(3):665–669.
  • Ritger PL, Peppas NA. 1987. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 5(1):37–42.
  • Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. 2008. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 29(6):703–708.
  • Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. 2007. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol. 7(8):2833–2841.
  • Schipper NG, Olsson S, Hoogstraate JA, De Boer AG, Vårum KM, Artursson P. 1997. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. 14(7):923–929.
  • Sheng JY, Han LM, Qin J, Ru G, Li RX, Wu LH, Cui DQ, Yang P, He YW, Wang JX. 2015. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 7(28):15430–15441.
  • Takeuchi H, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. 2005. Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm. 303(1–2):160–170.
  • Thongborisute J, Tsuruta A, Kawabata Y, Takeuchi H. 2006. The effect of particle structure of chitosan-coated liposomes and type of chitosan on oral delivery of calcitonin. J Drug Target. 14(3):147–154.
  • Valappil SP, Misra SK, Boccaccini AR, Roy I. 2006. Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices. 3(6):853–868.
  • Wu SW, Bin W, Tu BY, Li XF, Wang W, Liao SL, Sun CS. 2019. A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci. 108(6):2143–2152.
  • Yang J, Chen J, Pan D, Wan YY, Wang Z. 2013. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym. 92(1):719–725.
  • Yu M, Yang YW, Zhu CL, Guo SY, Gan Y. 2016. Advances in the transepithelial transport of nanoparticles. Drug Discov Today. 21(7):1155–1161.
  • Zhang PW, Xu YN, Zhu X, Huang Y. 2015. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 496(2):993–1005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.