263
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Targeted drug delivery via folate decorated nanocarriers based on linear polymer for treatment of breast cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 19-24 | Received 29 Apr 2021, Accepted 10 Dec 2021, Published online: 21 Dec 2021

References

  • Aghajanzadeh M, Ghannad F, Zamani M, Andalib S, Danafar H. 2019. Anti-inflammatory effect of rosuvastatin using diblock amphiphilic copolymer: synthesis, characterization, in vitro and in vivo study. J Biomater Appl. 34(2):229–238.
  • Aghajanzadeh M, Zamani M, Rostamizadeh K, Sharafi A, Danafar H. 2018. The role of miktoarm star copolymers in drug delivery systems. J Macromol Sci A. 55(7):559–571.
  • Ayubi M, Karimi M, Abdpour S, Rostamizadeh K, Parsa M, Zamani M, Saedi A. 2019. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: synthesis, toxicity and biocompatibility study. Mater Sci Eng C Mater Biol Appl. 104:109810.
  • Barichello JM, Morishita M, Takayama K, Nagai T. 1999. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 25(4):471–476.
  • Behl A, Parmar VS, Malhotra S, Chhillar AK. 2020. Biodegradable diblock copolymeric PEG-PCL nanoparticles: synthesis, characterization and applications as anticancer drug delivery agents. Polymer. 207(122901):122901.
  • Dayyani N, Khoee S, Ramazani A. 2015. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur J Med Chem. 98:190–202.
  • DeSantis C, Ma J, Bryan L, Jemal A. 2014. Breast cancer statistics, 2013. CA Cancer J Clin. 64(1):52–62.
  • Feng R, Zhu W, Chu W, Teng F, Meng N, Deng P, Song Z. 2017. Y-shaped folic acid-conjugated PEG-PCL copolymeric micelles for delivery of curcumin. Anticancer Agents Med Chem. 17(4):599–607.
  • Feng T, Ai X, An G, Yang P, Zhao Y. 2016. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 10(4):4410–4420.
  • Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, et al. 2015. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16(1):25–35.
  • Geetha P, Sivaram AJ, Jayakumar R, Mohan CG. 2016. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr Polym. 142:240–249.
  • Gökçe Kocabay Ö, İsmail O. 2021. Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. Int J Polym Mater Polym Biomater. 70(5):328–337.
  • Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, et al. 2015. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 17(1):66.
  • Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. 2014. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 32(4):693–710.
  • Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Venkatachalam K, Wang MH. 2020. Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int J Biol Macromol. 164:2073–2084.
  • Mu Q, Kievit FM, Kant RJ, Lin G, Jeon M, Zhang M. 2015. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale. 7(43):18010–18014.
  • Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. 2006. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6(11):2427–2430.
  • Ndong Ntoutoume GMA, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, et al. 2016. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett. 26(3):941–945.
  • Patri AK, Kukowska-Latallo JF, Baker JR. 2005. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 57(15):2203–2214.
  • Petrović S, Tačić A, Savić S, Nikolić V, Nikolić L, Savić S. 2017. Sulfanilamide in solution and liposome vesicles; in vitro release and UV-stability studies. Saudi Pharm J. 25(8):1194–1200.
  • Pham XN, Nguyen TP, Pham TN, Tran TTN, Tran TVT. 2016. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv Nat Sci Nanosci Nanotechnol. 7(4):045010.
  • Sarkar P, Ghosh S, Sarkar K. 2021. Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle: targeted drug delivery and imaging for triple negative breast cancer. Colloids Surf B Biointerfaces. 197:111382.
  • Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, Zackrisson S, Cardoso F. 2015. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 26(5):v8–v30.
  • Shin SC, Choi JS, Li X. 2006. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharm. 313(1–2):144–149.
  • Singh SK, Singh S, Lillard JW, Jr, Singh R. 2017. Drug delivery approaches for breast cancer. Int J Nanomedicine. 12:6205–6218.
  • Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, D’Angelo J, Cattel L, Couvreur P. 2000. Design of folic acid‐conjugated nanoparticles for drug targeting. J Pharm Sci. 89(11):1452–1464.
  • Sudimack J, Lee RJ. 2000. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 41(2):147–162.
  • Sutradhar KB, Amin ML. 2014. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014:1–12.
  • Xue B, Kozlovskaya V, Liu F, Chen J, Williams JF, Campos-Gomez J, Saeed M, Kharlampieva E. 2015. Intracellular degradable hydrogel cubes and spheres for anti-cancer drug delivery. ACS Appl Mater Interfaces. 7(24):13633–13644.
  • Yoon K, Kang HC, Li L, Cho H, Park MK, Lee E, Bae YH, Huh KM. 2015. Amphiphilic poly (ethylene glycol)-poly (ε-caprolactone) AB 2 miktoarm copolymers for self-assembled nanocarrier systems: synthesis, characterization, and effects of morphology on antitumor activity. Polym Chem. 6(4):531–542.
  • Zamani M, Rostamizadeh K, Manjili HK, Danafar H. 2018. In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur Polym J. 103:260–270.
  • Zamani M, Shirinzadeh A, Aghajanzadeh M, Andalib S, Danafar H. 2019. In vivo study of mPEG-PCL as a nanocarriers for anti-inflammatory drug delivery of simvastatin. Pharm Dev Technol. 24(6):663–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.