180
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Permeability of olmesartan medoxomil from lipid based and suspension formulations using an optimized HDM-PAMPA model

ORCID Icon & ORCID Icon
Pages 749-757 | Received 17 Jan 2021, Accepted 15 Aug 2022, Published online: 27 Aug 2022

References

  • Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NFH. 1995. Passive diffusion of weak organic electrolytes across Caco‐2 cell monolayers: Uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci. 84(10):1197–1204.
  • Amidon GL, Lennernäs H, Shah VP, Crison JR. 1995. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res An Off J Am Assoc Pharm Sci. 12(3):413–420.
  • Anderson BW, Levine AS, Levitt DG, Kneip JM, Levitt MD. 1988. Physiological measurement of luminal stirring in perfused rat jejunum. Am J Physiol. 254(6):G843–G848.
  • Artursson P, Karlsson J. 1991. [Database] Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 175(3):880–885.
  • Avdeef A, Artursson P, Neuhoff S, Lazorova L, Gråsjö J, Tavelin S. 2005. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKaflux method. Eur J Pharm Sci. 24(4):333–349.
  • Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I. 2001. Drug absorption in vitro model: filter-immobilized artificial membranes: 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur J Pharm Sci. 14(4):271–280.
  • Beg S, Sharma G, Thanki K, Jain S, Katare OP, Singh B. 2015. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: Systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm. 493(1–2):466–482.
  • Buckley ST, Fischer SM, Fricker G, Brandl M. 2012. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci. 45(3):235–250.
  • Bujard A, Petit C, Carrupt PA, Rudaz S, Schappler J. 2017. HDM-PAMPA to predict gastrointestinal absorption, binding percentage, equilibrium and kinetics constants with human serum albumin and using 2 end-point measurements. Eur J Pharm Sci. 97:143–150.
  • Bujard A, Sol M, Carrupt PA, Martel S. 2014. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Eur J Pharm Sci. 63:36–44.
  • Camenisch G, Folkers G, Van De Waterbeemd H. 1997. Comparison of passive drug transport through Caco-2 cells and artificial membranes. Int J Pharm. 147:61–70.
  • Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP, et al. 1999. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Delivery Rev. 36(2–3):165–178.
  • Costa P, Sousa Lobo JM. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13(2):123–133.
  • Dams I, Ostaszewska A, Puchalska M, Chmiel J, Cmoch P, Bujak I, Białońska A, Szczepek W. 2015. Synthesis and physicochemical characterization of the process-related impurities of olmesartan medoxomil. Do 5-(biphenyl-2-yl)-1-triphenylmethyltetrazole intermediates in Sartan syntheses exist? Molecules. 20(12):21346–21363.
  • Fade V. 1998. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci. 87(12):1604–1607.
  • FDA. 1997. Guidance for ındustry dissolution testing of ımmediate evaluation. USA: FDA.
  • Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, Pal TK. 2014. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf B Biointerfaces. 115:286–294.
  • Gutknecht J, Tosteson DC. 1973. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science. 182(4118):1258–1261.
  • Han M, Fu S, Gao J-Q, Fang X-L. 2009. Evaluation of intestinal absorption of ginsenoside Rg1 ıncorporated in microemulison using parallel artificial membrane permeability assay. Biol Pharm Bull. 32(6):1069–1074.
  • Ho NFH, Raub TJ, Burton PS, Barsuhn CL, Adson A, Audus KL, Borchardt RT. 1999. Transport processes in pharmaceutical systems. USA: CRC Press.
  • International Conference on Harmonization. 2005. ICH topic Q2 (R1) validation of analytical procedures : text and methodology. International Conference on Harmonization, London, UK.
  • Kansy M, Avdeef A, Fischer H. 2004. Advances in screening for membrane permeability: high-resolution PAMPA for medicinal chemists. Drug Discov Today Technol. 1(4):349–355.
  • Kansy M, Senner F, Gubernator K. 1998. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 41(7):1007–1010.
  • Karlsson J, Artursson P. 1991. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int J Pharm. 71(1–2):55–64
  • Kogan A, Kesselman E, Danino D, Aserin A, Garti N. 2008. Viability and permeability across Caco-2 cells of CBZ solubilized in fully dilutable microemulsions. Colloids Surf B Biointerfaces. 66(1):1–12.
  • Komesli Y, Burak Ozkaya A, Ugur Ergur B, Kirilmaz L, Karasulu E. 2019. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev Ind Pharm. 45(8):1292–1305.
  • Komesli Y, Yildirim Y, Karasulu E. 2020. Visualisation of real-time oral biodistribution of fluorescent labeled self-microemulsifying drug delivery system of olmesartan medoxomil using optical imaging method. Drug Metab Pharmacokinet. 36:100365.
  • Lennernäs H. 1998. Human intestinal permeability. J Pharm Sci. 87(4):403–410.
  • Levitt MD, Furne JK, Strocchi A, Anderson BW, Levitt DG. 1990. Physiological measurement of luminal stirring in the dog and human small bowel. J Clin Invest. 86(5):1540–1547.
  • Markovic BD, Vladimirov SM, Cudina OA, Odovic JV, Karljikovic-Rajic KD. 2012. Karljikovic–Rajic KD. A PAMPA assay as fast predictive model of passive human skin permeability of new synthesized corticosteroid C-21 esters. Molecules. 17(1):480–491.
  • Masungi C, Mensch J, Van Dijck A, Borremans C, Willems B, Mackie C. 2008. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Pharmazie. 63(3):194–199.
  • MultiScreen IP Filter Plate. MultiScreen IP filter plate, 0.45 µm, clear, non-sterile This clear 96 well filter plate has a hydrophobic PVDF membrane used for PAMPA. | Sigma-Aldrich [Internet]. Multiscreen IP Filter Plate; [accessed 2020 Dec 25]. https://www.sigmaaldrich.com/catalog/product/mm/maipntr10?lang=en&region=TR.
  • Nielsen PE, Avdeef A. 2004. PAMPA – a drug absorption in vitro model: 8. Apparent filter porosity and the unstirred water layer. Eur J Pharm Sci. 22(1):33–41.
  • Obata K, Sugano K, Machida M, Aso Y. 2004. Biopharmaceutics classification by high throughput solubility assay and PAMPA. Drug Dev Ind Pharm. 30(2):181–185.
  • Okur NU, Ege MA, Karasulu Y. 2014. Preparatİon and characterization of naproxen loaded microemulsion formulations for dermal application. Int J Pharm. 4(4):33–42.
  • Ottaviani G, Martel S, Carrupt PA. 2006. Parallel artificial membrane permeability assay: A new membrane for the fast prediction of passive human skin permeability. J Med Chem. 49(13):3948–3954.
  • Ottaviani G, Wendelspiess S, Alvarez-Sánchez R. 2015. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media. Mol Pharm. 12(4):1171–1179.
  • Reis JM, Dezani AB, Pereira TM, Avdeef A, Serra CHR. 2013. Lamivudine permeability study: a comparison between PAMPA, ex vivo and in situ single-pass intestinal perfusion (SPIP) in rat jejunum. Eur J Pharm Sci. 48(4–5):781–789.
  • Ruell JA, Tsinman KL, Avdeef A. 2003. PAMPA – a drug absorption in vitro model: 5. Unstirred water layer in iso-pH mapping assays and pKaflux – optimized design (pOD-PAMPA). Eur J Pharm Sci. 20(4–5):393–402.
  • Shabir GA. 2004. HPLC method development and validation for pharmaceutical analysis. Pharm Technol Eur. 16:37–49.
  • Sinkó B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, Takács-Novák K. 2012. Skin-PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 45(5):698–707.
  • Sugano K, Hamada H, Machida M, Ushio H, Saitoh K, Terada K. 2001. Optimized conditions of bio-mimetic artificial membrane permeation assay. Int J Pharm. 228(1–2):181–188.
  • Teksin ZS, Hom K, Balakrishnan A, Polli JE. 2006. Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. J Control Release. 116(1):50–57.
  • US Food and Drug Administration (FDA). 2000. Guidance for industry. Analytical procedures and methods validation. Chemistry, manufacturing, and controls documentation. Draft Guidance. USA: US Food and Drug Administration (FDA).
  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. 2002. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 45(12):2615–2623.
  • Wohnsland F, Faller B. 2001. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 44(6):923–930.
  • Yu H, Wang Q, Sun Y, Shen M, Li H, Duan Y. 2015. A new PAMPA model proposed on the basis of a synthetic phospholipid membrane. PLOS ONE. 10(2):e0116502.
  • Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG, Dushkin AV, Su W. 2018. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 25(1):198–209.
  • Zhu C, Jiang L, Chen TM, Hwang KK. 2002. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem. 37(5):399–407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.