169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improved uptake and bioavailability of cinnamaldehyde via solid lipid nanoparticles for oral delivery

, , &
Pages 1038-1048 | Received 27 Jul 2022, Accepted 10 Nov 2022, Published online: 24 Nov 2022

References

  • Abuasal BS, Lucas C, Peyton B, Alayoubi A, Nazzal S, Sylvester PW, Kaddoumi A. 2012. Enhancement of intestinal permeability utilizing solid lipid nanoparticles increases gamma-tocotrienol oral bioavailability. Lipids. 47(5):461–469.
  • Aguilera-Garrido A, Arranz E, Galvez-Ruiz MJ, Marchal JA, Galisteo-Gonzalez F, Giblin L. 2022. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid. Drug Deliv. 29(1):1971–1982.
  • Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M, Pottoo FH, Sarafroz M, Jafar M, Umar K. 2019. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. Int J Biol Macromol. 128:825–838.
  • Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. 2022. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm Dev Technol. 27(5):525–544.
  • Arana L, Bayon-Cordero L, Sarasola LI, Berasategi M, Ruiz S, Alkorta I. 2019. Solid lipid nanoparticles surface modification modulates cell internalization and improves chemotoxic treatment in an oral carcinoma cell line. Nanomaterials (Basel). 9(3):464.
  • Banerjee S, Pillai J. 2019. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol. 15(6):499–515.
  • Bi R, Shao W, Wang Q, Zhang N. 2009. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol. 5(1):84–92.
  • Cai Z, Wang Y, Zhu LJ, Liu ZQ. 2010. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab. 11(2):197–207.
  • Du Y, Ling L, Ismail M, He W, Xia Q, Zhou W, Yao C, Li X. 2018. Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int J Pharm. 549(1–2):352–362.
  • Harde H, Das M, Jain S. 2011. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 8(11):1407–1424.
  • He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J, et al. 2013. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 34(25):6082–6098.
  • Hong SH, Ismail IA, Kang SM, Han DC, Kwon BM. 2016. Cinnamaldehydes in cancer chemotherapy. Phytother Res. 30(5):754–767.
  • Hu L, Xing Q, Meng J, Shang C. 2010. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech. 11(2):582–587.
  • Huang Z, Wu L, Wang W, Wang W, Fu F, Zhang X, Huang Y, Pan X, Wu C. 2021. Major difference in particle size, minor difference in release profile: a case study of solid lipid nanoparticles. Pharm Dev Technol. 26(10):1110–1119.
  • Jessica Elizabeth T, Gassara F, Kouassi AP, Brar SK, Belkacemi K. 2017. Spice use in food: properties and benefits. Crit Rev Food Sci Nutr. 57(6):1078–1088.
  • Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. 2016. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 23(2):459–470.
  • Lea T. 2015. Epithelial cell models; general introduction. In: verhoeckx K, Cotter P, Lopez-Exposito I, editors. The impact of food bioactives on health: in vitro and ex vivo models. Cham, Switzerland: Springer International Publishing; p. 95–102.
  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. 2009. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 133(3):238–244.
  • Li C, Zhou K, Chen D, Xu W, Tao Y, Pan Y, Meng K, Shabbir MAB, Liu Q, Huang L, et al. 2019. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin. Int J Nanomedicine. 14:1619–1631.
  • Ma Y, He H, Xia F, Li Y, Lu Y, Chen D, Qi J, Lu Y, Zhang W, Wu W. 2017. In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 13(8):2643–2654.
  • Mendes SJF, Sousa F, Pereira DMS, Ferro TAF, Pereira ICP, Silva BLR, Pinheiro A, Mouchrek AQS, Monteiro-Neto V, Costa SKP, et al. 2016. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int Immunopharmacol. 34:60–70.
  • Nishihira VSK, Rubim AM, Brondani M, Dos Santos JT, Pohl AR, Friedrich JF, de Lara JD, Nunes CM, Feksa LR, Simao E, et al. 2019. In vitro and in silico protein corona formation evaluation of curcumin and capsaicin loaded-solid lipid nanoparticles. Toxicol in Vitro. 61:104598.
  • Ouyang H, Hu J, Qiu X, Wu S, Guo F, Tan Y. 2022. Improved biopharmaceutical performance of antipsychotic drug using lipid nanoparticles via intraperitoneal route. Pharm Dev Technol. 27(7):853–863.
  • Patel M, Mundada V, Sawant K. 2019a. Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies. Artif Cells Nanomed Biotechnol. 47(1):144–153.
  • Patel MH, Mundada VP, Sawant KK. 201b9. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm. 45(8):1242–1257.
  • Pedata P, Ricci G, Malorni L, Venezia A, Cammarota M, Volpe MG, Iannaccone N, Guida V, Schiraldi C, Romano M, et al. 2019. In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Food Res Int. 119:634–642.
  • Peng LX, Lei ZQ, Rao ZL, Yang RC, Zheng L, Fan YX, Luan F, Zeng N. 2021. Cardioprotective activity of ethyl acetate extract of Cinnamomi Ramulus against myocardial ischemia/reperfusion injury in rats via inhibiting NLRP3 inflammasome activation and pyroptosis. Phytomedicine. 93:153798.
  • Piazzini V, Landucci E, D'Ambrosio M, Tiozzo Fasiolo L, Cinci L, Colombo G, Pellegrini-Giampietro DE, Bilia AR, Luceri C, Bergonzi MC. 2019. Chitosan coated human serum albumin nanoparticles: a promising strategy for nose-to-brain drug delivery. Int J Biol Macromol. 129:267–280.
  • Reinholz J, Diesler C, Schottler S, Kokkinopoulou M, Ritz S, Landfester K, Mailander V. 2018. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomater. 71:432–443.
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. 2005. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 21(1):1–26.
  • Shah P, Chavda K, Vyas B, Patel S. 2021. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res. 11(3):1166–1185.
  • Shah MK, Madan P, Lin S. 2015. Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model. Pharm Dev Technol. 20(7):877–885.
  • Sharma M, Sharma R. 2018. Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration. RSC Adv. 8(5):2541–2551.
  • Sharma M, Sharma S, Wadhwa J. 2019. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder. Artif Cells Nanomed Biotechnol. 47(1):45–55.
  • Sharma M, Sharma V, Panda AK, Majumdar DK. 2011. Development of enteric submicron particle formulation of papain for oral delivery. Int J Nanomedicine. 6:2097–2111.
  • Shi LL, Cao Y, Zhu XY, Cui JH, Cao QR. 2015. Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model. Int J Pharm. 478(1):60–69.
  • Silki, Sinha VR. 2018. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS PharmSciTech. 19(3):1264–1273.
  • Souto EB. 2009. A special issue on Lipid-based delivery systems (liposomes, lipid nanoparticles, lipid matrices and medicines). J Biomed Nanotechnol. 5(4):315–316.
  • Swaan PW. 1998. Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm Res. 15(6):826–834.
  • Talegaonkar S, Bhattacharyya A. 2019. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech. 20(3):121.
  • van Breemen RB, Li Y. 2005. Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol. 1(2):175–185.
  • Vandghanooni S, Rasoulian F, Eskandani M, Akbari Nakhjavani S, Eskandani M. 2021. Acriflavine-loaded solid lipid nanoparticles: preparation, physicochemical characterization, and anti-proliferative properties. Pharm Dev Technol. 26(9):934–942.
  • Xu R, Yuan Y, Qi J, Zhou J, Guo X, Zhang J, Zhan R. 2018. Elucidation of the intestinal absorption mechanism of loganin in the human intestinal caco-2 cell model. Evid Based Complement Alternat Med. 2018:8340563.
  • Yang H, Zhai B, Fan Y, Wang J, Sun J, Shi Y, Guo D. 2018. Intestinal absorption mechanisms of araloside A in situ single-pass intestinal perfusion and in vitro Caco-2 cell model. Biomed Pharmacother. 106:1563–1569.
  • Zhang Z, Feng SS. 2006. Self-assembled nanoparticles of poly(lactide)–Vitamin E TPGS copolymers for oral chemotherapy. Int J Pharm. 324(2):191–198.
  • Zhao B, Gu S, Du Y, Shen M, Liu X, Shen Y. 2018. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int J Pharm. 535(1–2):164–171.
  • Zhou F, Huang W, Li M, Zhong Y, Wang M, Lu B. 2018. Bioaccessibility and absorption mechanism of phenylethanoid glycosides using simulated digestion/Caco-2 intestinal cell models. J Agric Food Chem. 66(18):4630–4637.
  • Zuo J, Zhao D, Yu N, Fang X, Mu Q, Ma Y, Mo F, Wu R, Ma R, Wang L, et al. 2017. Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell Physiol Biochem. 42(4):1514–1525.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.