190
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Rivaroxaban-loaded SLNs with treatment potential of deep vein thrombosis: in-vitro, in-vivo, and toxicity evaluation

, , , , , , & show all
Pages 625-637 | Received 29 Mar 2023, Accepted 26 Jun 2023, Published online: 19 Jul 2023

References

  • Abdelbary G, Fahmy RH. 2009. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS Pharmscitech. 10(1):211–219.
  • Ali SH, Sulaiman GM, Al-Halbosiy MM, Jabir MS, Hameed AH. 2019. Fabrication of hesperidin nanoparticles loaded by poly lactic co-glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif Cells Nanomed Biotechnol. 47(1):378–394.
  • American Society for Testing and Materials [ASTM]. 2013. ASTM F756-08, standard practice for assessment of hemolytic properties of materials. West Conshohocken (PA): ASTM International, ASTM Book of Standards.
  • Anjum A, Shabbir K, Din FU, Shafique S, Zaidi SS, Almari AH, Alqahtani T, Maryiam A, Khan MM, Fatease AA, et al. 2023. Co-delivery of amphotericin B and pentamidine loaded niosomal gel for the treatment of Cutaneous leishmaniasis. Drug Deliv. 30(1):2173335 doi: 10.1080/10717544.2023.2173335. PMC: 36722301
  • Bahari LAS, Hamishehkar H. 2016. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 6(2):143–151. doi: 10.15171/apb.2016.021.
  • Batool S, Sohail S, Din FU, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA, Choi HG. 2023. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 30(1):2183815.doi: 10.1080/10717544.2023.2183815. PMC: 36866455
  • Batool S, Zahid F, Ud-Din F, Naz SS, Dar MJ, Khan MW, Zeb A, Khan GM. 2021. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev Ind Pharm. 47(3):440–453. doi: 10.1080/03639045.2021.1890768.
  • Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D. 2012. Poly (2‐ethyl‐2‐oxazoline) as alternative for the stealth polymer poly (ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci. 12(7):986–998. doi: 10.1002/mabi.201200017.
  • Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR. 2019. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 139(10):e56–e528.
  • Bibi M, Din F u, Anwar Y, Alkenani NA, Zari AT, Mukhtiar M, Abu Zeid IM, Althubaiti EH, Nazish H, Zeb A, et al. 2022. Cilostazol-loaded solid lipid nanoparticles: bioavailability and safety evaluation in an animal model. J Drug Deliv Sci Technol. 74:103581. doi: 10.1016/j.jddst.2022.103581.
  • Björnsson HK, Gudmundsson DO, Björnsson ES. 2020. Liver injury caused by oral anticoagulants: a population‐based retrospective cohort study. Liver Int. 40(8):1895–1900. doi: 10.1111/liv.14559.
  • Bratsos S. 2019. Pharmacokinetic properties of rivaroxaban in healthy human subjects. Cureus. 11(8):e5484. doi: 10.7759/cureus.5484.
  • Chaudhary R, Sharma T, Garg J, Sukhi A, Bliden K, Tantry U, Turagam M, Lakkireddy D, Gurbel P. 2020. Direct oral anticoagulants: a review on the current role and scope of reversal agents. J Thromb Thrombolysis. 49(2):271–286. doi: 10.1007/s11239-019-01954-2.
  • Cohen AT, Bauersachs R. 2019. Rivaroxaban and the EINSTEIN clinical trial programme. Blood Coagul Fibrinolysis. 30(3):85–95. doi: 10.1097/MBC.0000000000000800.
  • Costa DC, de Almeida GS, Rabelo VW-H, Cabral LM, Sathler PC, Abreu PA, Ferreira VF, da Silva LCRP, da Silva F. 2018. Synthesis and evaluation of the cytotoxic activity of Furanaphthoquinones tethered to 1H-1, 2, 3-triazoles in Caco-2, Calu-3, MDA-MB231 cells. Eur J Med Chem. 156:524–533. doi: 10.1016/j.ejmech.2018.07.018.
  • Dar MJ, Din FU, Khan GM. 2018. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv. 25(1):1595–1606. doi: 10.1080/10717544.2018.1494222.
  • Din F, Choi JY, Kim DW, Mustapha O, Kim DS, Thapa RK, Ku SK, Youn YS, Oh KT, Yong CS, et al. 2017. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 24(1):502–510.
  • Din FU, Jin SG, Choi H-G. 2021. Particle and gel characterization of irinotecan-loaded double-reverse thermosensitive hydrogel. Polymers. 13(4):551. doi: 10.3390/polym13040551.
  • Din FU, Saleem S, Aleem F, Ahmed R, Huda NU, Ahmed S, Khaleeq N, Shah KU, Ullah I, Zeb A, et al. 2018. Advanced colloidal technologies for the enhanced bioavailability of drugs. Cogent Med. 5(1):1480572. doi: 10.1080/2331205X.2018.1480572.
  • Ding T, Chen L, Zhai LH, Fu Y, Sun BW. 2017. Compatibility study of rivaroxaban and its pharmaceutical excipients. J Therm Anal Calorim. 130:1569–1573.
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K. 2015. Box-Behnken experimental design for preparation and optimization of ciprofloxacin hydrochloride-loaded CaCO3 nanoparticles. J Drug Deliv Sci Technol. 29:125–131. doi: 10.1016/j.jddst.2015.06.015.
  • Elsayad MK, Mowafy HA, Zaky AA, Samy AM. 2021. Chitosan caged liposomes for improving oral bioavailability of rivaroxaban: in vitro and in vivo evaluation. Pharm Dev Technol. 26(3):316–327. doi: 10.1080/10837450.2020.1870237.
  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. 2003. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 24(7):1121–1131. doi: 10.1016/S0142-9612(02)00445-3.
  • Fordyce CB, Hellkamp AS, Lokhnygina Y, Lindner SM, Piccini JP, Becker RC, Berkowitz SD, Breithardt G, Fox KAA, Mahaffey KW, et al. 2016. On-treatment outcomes in patients with worsening renal function with rivaroxaban compared with warfarin: insights from ROCKET AF. Circulation. 134(1):37–47. doi: 10.1161/CIRCULATIONAHA.116.021890.
  • Gelosa P, Castiglioni L, Tenconi M, Baldessin L, Racagni G, Corsini A, Bellosta S. 2018. Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacol Res. 135:60–79. doi: 10.1016/j.phrs.2018.07.016.
  • Giri BR, Kim JS, Park JH, Jin SG, Kim KS, Din F u, Choi HG, Kim DW. 2021. Improved bioavailability and high photostability of methotrexate by spray-dried surface-attached solid dispersion with an aqueous medium. Pharmaceutics. 13(1):111. doi: 10.3390/pharmaceutics13010111.
  • Harivardhan Reddy L, Murthy R. 2005. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPs PharmSciTech. 6(2):E158–E166. doi: 10.1208/pt060224.
  • Imran B, Din FU, Ali Z, Fatima A, Khan MW, Kim DW, Malik M, Sohail S, Batool S, Jawad M, et al. 2022. Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci Technol. 77:103904. doi: 10.1016/j.jddst.2022.103904.
  • International Organization for Standardization [ISO]. 2009. ISO I 10993–5: 2009 Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization.
  • Jamshaid H, Din FU, Khan GM. 2021. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnol. 19(1):1–51. doi: 10.1186/s12951-021-00853-0.
  • Jamshaid H, ud Din F, Nousheen K, Khan SU, Fatima A, Khan S, Choi HG, Khan GM. 2023. Mannosylated imiquimod-terbinafine co-loaded transethosomes for cutaneous leishmaniasis; assessment of its anti-leishmanial potential, in vivo safety and immune response modulation. Biomater Adv. 145:213266. doi: 10.1016/j.bioadv.2022.213266.
  • Khaleeq N, Din F-U, Khan AS, Rabia S, Dar J, Khan GM. 2020. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J Microencapsul. 37(2):160–169. doi: 10.1080/02652048.2020.1713242.
  • Khalid H, Batool S, Din FU, Khan S, Khan GM. 2022. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. R Soc Open Sci. 9(10):220428. doi: 10.1098/rsos.220428.
  • Khan AS, ud Din F, Ali Z, Bibi M, Zahid F, Zeb A, Khan GM. 2021. Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of cutaneous leishmaniasis. Int J Pharm. 593:120109. doi: 10.1016/j.ijpharm.2020.120109.
  • Khan MM, Zaidi SS, Siyal FJ, Khan SU, Ishrat G, Batool S, Mustapha O, Khan S, ud Din F. 2023. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol. 79:104005. doi: 10.1016/j.jddst.2022.104005.
  • Khan N, Shah FA, Rana I, Ansari MM, Din FU, Rizvi SZH, Aman W, Lee G-Y, Lee E-S, Kim J-K, et al. 2020. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm. 577:119033. doi: 10.1016/j.ijpharm.2020.119033.
  • Kim JS, Choi YJ, Woo MR, Cheon S, Ji SH, Im D, ud Din F, Kim JO, Youn YS, Oh KT, et al. 2021. New potential application of hydroxypropyl-β-cyclodextrin in solid self-nanoemulsifying drug delivery system and solid dispersion. Carbohydr Polym. 271:118433. doi: 10.1016/j.carbpol.2021.118433.
  • Kim JS, Park JH, Jeong SC, Kim DS, Yousaf AM, Din FU, Kim JO, Yong CS, Youn YS, Oh KT, et al. 2018. Novel revaprazan-loaded gelatin microsphere with enhanced drug solubility and oral bioavailability. J Microencapsul. 35(5):421–427. doi: 10.1080/02652048.2018.1515997.
  • Kim JS, ud Din F, Jin Choi Y, Ran Woo M, Cheon S, Hun Ji S, Park S, Oh Kim J, Seok Youn Y, Lim S-J, et al. 2022. Hydroxypropyl-β-cyclodextrin-based solid dispersed granules: a prospective alternative to conventional solid dispersion. Int J Pharm. 628:122286. doi: 10.1016/j.ijpharm.2022.122286.
  • Koopaei MN, Khoshayand MR, Mostafavi SH, Amini M, Khorramizadeh MR, Tehrani MJ, Atyabi F, Dinarvand R. 2014. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iran J Pharm Res. 13(3):819.
  • Kovacevic A, Savic S, Vuleta G, Müller RH, Keck CM. 2011. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm. 406(1-2):163–172. doi: 10.1016/j.ijpharm.2010.12.036.
  • Kubitza D, Becka M, Mueck W, Halabi A, Maatouk H, Klause N, Lufft V, Wand DD, Philipp T, Bruck H. 2010. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct factor Xa inhibitor. Br J Clin Pharmacol. 70(5):703–712. doi: 10.1111/j.1365-2125.2010.03753.x.
  • Kubitza D, Roth A, Becka M, Alatrach A, Halabi A, Hinrichsen H, Mueck W. 2013. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban – an oral, direct factor Xa inhibitor. Br J Clin Pharmacol. 76(1):89–98. doi: 10.1111/bcp.12054.
  • Machado ME, de Souza Furtado P, da Costa Bernardes Araújo C, Simon A, de Moraes MC, Rodrigues Pereira da Silva LC, do Carmo FA, Cabral LM, Sathler PC. 2021. Novel rivaroxaban—loaded poly (lactic-co-glycolic acid)/poloxamer nanoparticles: preparation, physicochemical characterization, in vitro evaluation of time-dependent anticoagulant activity and toxicological profile. Nanotechnology. 32(13):135101. doi: 10.1088/1361-6528/abd0b5.
  • Malam Y, Loizidou M, Seifalian AM. 2009. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 30(11):592–599. doi: 10.1016/j.tips.2009.08.004.
  • Maqsood S, Din FU, Khan SU, Elahi E, Ali Z, Jamshaid H, Zeb A, Nadeem T, Ahmed W, Khan S, et al. 2022. Levosulpiride-loaded nanostructured lipid carriers for brain delivery with antipsychotic and antidepressant effects. Life Sci. 311(Pt B):121198. doi: 10.1016/j.lfs.2022.121198.
  • Mazzarino L, Loch-Neckel G, Dos Santos Bubniak L, Ourique F, Otsuka I, Halila S, Curi Pedrosa R, Santos-Silva MC, Lemos-Senna E, Curti Muniz E, et al. 2015. Nanoparticles made from xyloglucan-block-polycaprolactone copolymers: safety assessment for drug delivery. Toxicol Sci. 147(1):104–115. doi: 10.1093/toxsci/kfv114.
  • Mehnert W, Mäder K. 2012. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 64:83–101. doi: 10.1016/j.addr.2012.09.021.
  • Metre S, Mukesh S, Samal SK, Chand M, Sangamwar AT. 2018. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 15(2):652–668. doi: 10.1021/acs.molpharmaceut.7b01027.
  • Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM. 2017. Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett. 12(1):1–16. doi: 10.1186/s11671-017-2249-8.
  • Mirchandani Y, Patravale VB, Brijesh S. 2021. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 335:457–464. doi: 10.1016/j.jconrel.2021.05.032.
  • Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4.
  • Müller RH, Mäder K, Gohla S. 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 50(1):161–177.
  • Mustapha O, Din FU, Kim DW, Park JH, Woo KB, Lim S-J, Youn YS, Cho KH, Rashid R, Yousaf AM, et al. 2016. Novel piroxicam-loaded nanospheres generated by the electrospraying technique: physicochemical characterisation and oral bioavailability evaluation. J Microencapsul. 33(4):323–330. doi: 10.1080/02652048.2016.1185475.
  • Oh DH, Din FU, Kim DW, Kim JO, Yong CS, Choi H-G. 2013. Flurbiprofen-loaded nanoparticles prepared with polyvinylpyrrolidone using Shirasu porous glass membranes and a spray-drying technique: nano-sized formation and improved bioavailability. J Microencapsul. 30(7):674–680. doi: 10.3109/02652048.2013.774447.
  • Onishi A, St Ange K, Dordick JS, Linhardt RJ. 2016. Heparin and anticoagulation. Front Biosci (Landmark Ed). 21(7):1372–1392. doi: 10.2741/4462.
  • Park JH, Cho JH, Kim DS, Kim JS, Din FU, Kim JO, Yong CS, Youn YS, Oh KT, Kim DW, et al. 2019. Revaprazan-loaded surface-modified solid dispersion: physicochemical characterization and in vivo evaluation. Pharm Dev Technol. 24(6):788–793. doi: 10.1080/10837450.2019.1597114.
  • Patel P, Patel R, Patel Y. 2017. Formulation, development and evaluation of rivaroxaban tablets by using solubility enhancement technique. Int J Pharm Sci Sci Res. 3(3):51–55. doi: 10.25141/2471-6782-2017-3.0051.
  • Pradhan R, Tran TH, Choi JY, Choi IS, Choi H-G, Yong CS, Kim JO. 2015. Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res. 38(4):522–533. doi: 10.1007/s12272-014-0399-0.
  • Qu SY, Xu Q, Wu W, Li F, Li CD, Huang R, Ding Q, Wei DQ. 2019. An unexpected dynamic binding mode between coagulation factor X and rivaroxaban reveals importance of flexibility in drug binding. Chem Biol Drug Des. 94(3):1664–1671. doi: 10.1111/cbdd.13568.
  • Rabia S, Khaleeq N, Batool S, Dar MJ, Kim DW, Din F-U, Khan GM. 2020. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: passive targeting via topical route. Nanomedicine. 15(2):183–203. doi: 10.2217/nnm-2019-0320.
  • Rashid R, Kim DW, Yousaf AM, Mustapha O, Park JH, ud Din F, Yong CS, Oh Y-K, Youn YS, Kim JO, et al. 2015. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe. Int J Nanomed. 10: 6147. doi: 10.2147/IJN.S91216.
  • Rizvi SZH, Shah FA, Khan N, Muhammad I, Ali KH, Ansari MM, Din FU, Qureshi OS, Kim K-W, Choe Y-H, et al. 2019. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int J Pharm. 560:136–143. doi: 10.1016/j.ijpharm.2019.02.002.
  • Salim MW, Shabbir K, Ud-Din F, Yousaf AM, Choi H-G, Khan GM. 2020. Preparation, in-vitro and in-vivo evaluation of rifampicin and vancomycin co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis. J Drug Deliv Sci Technol. 60:101996. doi: 10.1016/j.jddst.2020.101996.
  • Song ZK, Cao H, Wu H, Wei Q, Tang M, Yang S, Liu Y, Qin L. 2020. Current status of rivaroxaban in elderly patients with pulmonary embolism. Exp Ther Med. 19(4):2817–2825. doi: 10.3892/etm.2020.8559.
  • Sznitowska M, Gajewska M, Janicki S, Radwanska A, Lukowski G. 2001. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur J Pharm Biopharm. 52(2):159–163. doi: 10.1016/s0939-6411(01)00157-6.
  • ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. 2017. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 12:7291–7309. doi: 10.2147/IJN.S146315.
  • ud Din F, Kim DW, Choi JY, Thapa RK, Mustapha O, Kim DS, Oh Y-K, Ku SK, Youn YS, Oh KT, et al. 2017. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater. 54:239–248. doi: 10.1016/j.actbio.2017.03.007.
  • ud Din F, Rashid R, Mustapha O, Kim DW, Park JH, Ku SK, Oh Y-K, Kim JO, Youn YS, Yong CS, et al. 2015. Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Adv. 5(54):43687–43694. doi: 10.1039/C5RA05656J.
  • ud Din F, Zeb A, Shah KU. 2019. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Technol. 51:583–590. doi: 10.1016/j.jddst.2019.02.026.
  • Üner M, Yener G. 2007. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2(3):289–300.
  • Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, Xu Q, Li R. 2014. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. J Liposome Res. 24(3):171–181. doi: 10.3109/08982104.2014.891231.
  • Weitz JI, Chan NC. 2020. Novel antithrombotic strategies for treatment of venous thromboembolism. Blood. J Am Soc Hematol. 135(5):351–359.
  • World Health Organization [WHO]. 2009. Cardiovascular diseases (CVDS). [accessed 2023 June 21]. http://www who int/mediacentre/factsheets/fs317/en/index html.
  • World Health Organization [WHO] . 2021. Cardiovascular diseases (CVDs). [accessed 2023 June 21]. http://www who int/mediacentre/factsheets/detail.
  • Xing R, Mustapha O, Ali T, Rehman M, Zaidi S, Baseer A, Batool S, Mukhtiar M, Shafique S, Malik M. 2021. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. Biomed Res Int. 2021:1–14.
  • Zahid F, Batool S, Ud-Din F, Ali Z, Nabi M, Khan S, Salman O, Khan GM. 2022. Antileishmanial agents co-loaded in transfersomes with enhanced macrophage uptake and reduced toxicity. AAPS PharmSciTech. 23(6):226. doi: 10.1208/s12249-022-02384-9.
  • Zeb A, Arif ST, Malik M, Shah FA, Din FU, Qureshi OS, Lee E-S, Lee G-Y, Kim J-K. 2019. Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Investig. 49(5):485–517. doi: 10.1007/s40005-018-00418-8.
  • Zeb A, Rana I, Choi H-I, Lee C-H, Baek S-W, Lim C-W, Khan N, Arif ST, Sahar N u, Alvi AM, et al. 2020. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics. 12(12):1184. doi: 10.3390/pharmaceutics12121184.
  • Zhai L, Zhang Z, Guo L, Zhu Z, Hu C, Zhang G. 2021. Synthesis, characterization, and properties of rivaroxaban new crystalline forms. Cryst Res Technol. 56(9):2000243. doi: 10.1002/crat.202000243.
  • Zhou P, Yin J-X, Tao H-L, Zhang H-w 2020. Pathogenesis and management of heparin-induced thrombocytopenia and thrombosis. Clin Chim Acta. 504:73–80. doi: 10.1016/j.cca.2020.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.