438
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 678-696 | Received 19 Apr 2023, Accepted 02 Jul 2023, Published online: 14 Jul 2023

References

  • Aaron S, Deanna M. 2020. Considerations for the development of amorphous solid dispersions of poorly soluble drugs. CompareNetworks. [accessed 2023 Apr 15]. https://www.americanpharmaceuticalreview.com/.
  • Abuhelwa AY, Foster DJR, Mudge S, Hayes D, Upton RN. 2015. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 59(9):5681–5696. doi: 10.1128/AAC.00973-15.
  • Adhikari A, Polli JE. 2020. Characterization of grades of HPMCAS spray dried dispersions of itraconazole based on supersaturation kinetics and molecular interactions impacting formulation performance. Pharm Res. 37(10):192. doi: 10.1007/s11095-020-02909-6.
  • Akram A, Irfan M, Abualsunun WA, Bukhary DM, Alissa M. 2022. How to improve solubility and dissolution of irbesartan by fabricating ternary solid dispersions: ptimization and in-vitro characterization. Pharmaceutics. 14(11):2264. doi: 10.3390/pharmaceutics14112264.
  • Almeida A, Saerens L, de Beer T, Remon JP, Vervaet C. 2012. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations. Int J Pharm. 439(1–2):223–229. doi: 10.1016/j.ijpharm.2012.09.037.
  • Alopaeus JF, Hagesæther E, Tho I. 2019. Micellisation mechanism and behaviour of Soluplus®−Furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals. 12(1):15. doi: 10.3390/ph12010015.
  • Alshahrani SM, Lu W, Park J-B, Morott JT, Alsulays BB, Majumdar S, Langley N, Kolter K, Gryczke A, Repka MA. 2015. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF. AAPS PharmSciTech. 16(4):824–834. doi: 10.1208/s12249-014-0269-6.
  • Alshetaili A, Alshahrani SM, Almutairy BK, Repka MA. 2020. Hot melt extrusion processing parameters optimization. Processes. 8(11):1516. doi: 10.3390/pr8111516.
  • Avdeef A, Kansy M. 2022. Trends in PhysChem properties of newly approved drugs over the last six years; predicting solubility of drugs approved in 2021. J Solution Chem. 51(12):1455–1481. doi: 10.1007/s10953-022-01199-3.
  • AstraZeneca Pharmaceutical LP [AZP]. 2018. Highlights of prescribing information. Lynparza® (Olaparib) tablets. [accessed 2023 Apr 15]. https://www.accessdata.fda.gov/.
  • Baghel S, Cathcart H, O’Reilly NJ. 2018. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int J Pharm. 536(1):414–425. doi: 10.1016/j.ijpharm.2017.11.056.
  • Baghel S, Cathcart H, O'Reilly NJ. 2016. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 105(9):2527–2544. doi: 10.1016/j.xphs.2015.10.008.
  • Baghel P, Roy A, Verma S, Satapathy T, Bahadur S. 2020. Amelioration of lipophilic compounds in regards to bioavailability as self-emulsifying drug delivery system (SEDDS). Futur J Pharm Sci. 6(1):21. doi: 10.1186/s43094-020-00042-0.
  • Baird JA, Taylor LS. 2012. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 64(5):396–421.
  • Baraldo M. 2016. Meltdose tacrolimus pharmacokinetics. Transplant Proc. 48(2):420–423. doi: 10.1016/j.transproceed.2016.02.002.
  • Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Zhou Q. 2021. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 11(8):2505–2536. doi: 10.1016/j.apsb.2021.05.014.
  • Boersen N, Lee TW-Y, Shen XG, Hui H-W. 2014. A preliminary assessment of the impact of hot-melt extrusion on the physico-mechanical properties of a tablet. Drug Dev Ind Pharm. 40(10):1386–1394. doi: 10.3109/03639045.2013.828216.
  • Boghra RJ, Kothawade PC, Belgamwar VS, Nerkar PP, Tekade AR, Surana SJ. 2011. Solubility, dissolution rate and bioavailability enhancement of irbesartan by solid dispersion technique. Chem Pharm Bull (Tokyo). 59(4):438–441.
  • Browne E, Charifou R, Worku ZA, Babu RP, Healy AM. 2019. Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: a comparison of particle characteristics and performance. Int J Pharm. 566:173–184. doi: 10.1016/j.ijpharm.2019.05.062.
  • Browne E, Worku ZA, Healy AM. 2020. Physicochemical properties of poly-vinyl polymers and their influence on ketoprofen amorphous solid dispersion performance: a polymer selection case study. Pharmaceutics. 12(5):433. doi: 10.3390/pharmaceutics12050433.
  • Buch P, Holm P, Thomassen JQ, Scherer D, Branscheid R, Kolb U, Langguth P. 2010. IVIVC for fenofibrate immediate release tablets using solubility and permeability as in vitro predictors for pharmacokinetics. J Pharm Sci. 99(10):4427–4436. doi: 10.1002/jps.22148.
  • Bühler V. 2005. Polyvinylpyrrolidone excipients for pharmaceuticals. Heidelberg: Springer Berlin.
  • Butreddy A. 2022. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: a review from bench to clinic. Eur J Pharm Biopharm. 177:289–307. doi: 10.1016/j.ejpb.2022.07.010.
  • Butreddy A, Bandari S, Repka MA. 2021. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci. 158:105655. doi: 10.1016/j.ejps.2020.105655.
  • Catalent. 2021. DisperSol and catalent collaborate to establish KinetiSol® technology manufacturing hub for DisperSol pharmaceutical pipeline. Somerset (NJ): Catalent Inc. [accessed 2023 Apr 15]. https://www.catalent.com/.
  • Chavan RB, Lodagekar A, Shastri NR. 2018. Determination of precipitation inhibitory potential of polymers from amorphous solid dispersions. Drug Dev Ind Pharm. 44(12):1933–1941. doi: 10.1080/03639045.2018.1503295.
  • Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. 2019. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 14(3):248–264. doi: 10.1016/j.ajps.2018.09.003.
  • Chavan RB, Thipparaboina R, Kumar D, Shastri NR. 2016. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 6(81):77569–77576. doi: 10.1039/C6RA19746A.
  • Chen H, Pui Y, Liu C, Chen Z, Su C-C, Hageman M, Hussain M, Haskell R, Stefanski K, Foster K, et al. 2018. Moisture-induced amorphous phase separation of amorphous solid dispersions: Molecular mechanism, microstructure, and its impact on dissolution performance. J Pharm Sci. 107(1):317–326. doi: 10.1016/j.xphs.2017.10.028.
  • Chokshi RJ, Shah NH, Sandhu HK, Malick AW, Zia H. 2008. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J Pharm Sci. 97(6):2286–2298. doi: 10.1002/jps.21174.
  • Craig DQM. 2002. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 231(2):131–144. doi: 10.1016/s0378-5173(01)00891-2.
  • Cui F, Yang M, Jiang Y, Cun D, Lin W, Fan Y, Kawashima Y. 2003. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J Control Release. 91(3):375–384. doi: 10.1016/s0168-3659(03)00275-x.
  • DeBoyace K, Wildfong PLD. 2018. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci. 107(1):57–74. doi: 10.1016/j.xphs.2017.03.029.
  • Desai J, Alexander K, Riga A. 2006. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm. 308(1-2):115–123. doi: 10.1016/j.ijpharm.2005.10.034.
  • Dinunzio JC, Brough C, Hughey JR, Miller DA, Williams RO, McGinity JW. 2010. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol dispersing. Eur J Pharm Biopharm. 74(2):340–351. doi: 10.1016/j.ejpb.2009.09.007.
  • Ditzinger F, Price DJ, Ilie A-R, Köhl NJ, Jankovic S, Tsakiridou G, Aleandri S, Kalantzi L, Holm R, Nair A, et al. 2019. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches - a PEARRL review. J Pharm Pharmacol. 71(4):464–482. doi: 10.1111/jphp.12984.
  • Dobry DE, Settell DM, Baumann JM, Ray RJ, Graham LJ, Beyerinck RA. 2009. A model-based methodology for spray-drying process development. J Pharm Innov. 4(3):133–142. doi: 10.1007/s12247-009-9064-4.
  • Doherty C, York P. 1987. Mechanisms of dissolution of frusemide/PVP solid dispersions. Int J Pharm. 34(3):197–205. doi: 10.1016/0378-5173(87)90180-3.
  • Dohrn S, Luebbert C, Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G. 2021a. Solvent influence on the phase behavior and glass transition of amorphous solid dispersions. Eur J Pharm Biopharm. 158:132–142. doi: 10.1016/j.ejpb.2020.11.002.
  • Dohrn S, Rawal P, Luebbert C, Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G. 2021b. Predicting process design spaces for spray drying amorphous solid dispersions. Int J Pharm X. 3:100072. doi: 10.1016/j.ijpx.2021.100072.
  • Ekdahl A, Mudie D, Malewski D, Amidon G, Goodwin A. 2019. Effect of spray-dried particle morphology on mechanical and flow properties of felodipine in PVP VA amorphous solid dispersions. J Pharm Sci. 108(11):3657–3666. doi: 10.1016/j.xphs.2019.08.008.
  • Ellenberger DJ, Miller DA, Williams RO. 2018. Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: a Review. AAPS PharmSciTech. 19(5):1933–1956. doi: 10.1208/s12249-018-1007-2.
  • Fan N, Li J, Li J. 2021. Advantages of introducing an effective crystalline inhibitor in curcumin amorphous solid dispersions formulated by udragit E100. J Pharm Pharmacol. 73(2):185–192. doi: 10.1093/jpp/rgaa012.
  • Ferreira MP, Martins JP, Hirvonen J, Santos HA. 2020. Spray-drying for the formulation of oral drug delivery systems. In: Martins JP, Santos H, editors. Nanotechnology for oral drug delivery. Academic Press; p. 253–284. https://doi.org/10.1016/B978-0-12-818038-9.00007-7
  • Franco A, Más-Serrano P, Balibrea N, Rodriguez D, Javaloyes A, Díaz M, Gascón I, Ramon-Lopez A, Perez-Contreras J, Selva J, et al. 2019. Envarsus, a novelty for transplant nephrologists: observational retrospective study. Nefrologia (Engl Ed). 39(5):506–512. doi: 10.1016/j.nefro.2018.11.009.
  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. 2008. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 5(6):1003–1019. doi: 10.1021/mp8000793.
  • Furuishi T, Sato-Hata N, Fukuzawa K, Yonemochi E. 2023. Characterization of co-amorphous carvedilol–maleic acid system prepared by solvent evaporation. Pharm Dev Technol. 28(3-4):309–317. doi: 10.1080/10837450.2023.2194406.
  • Gala UH, Miller DA, Williams RO. 2020. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer. 1873(1):188319. doi: 10.1016/j.bbcan.2019.188319.
  • Goddeeris C, Willems T, van den Mooter G. 2008. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur J Pharm Sci. 34(4–5):293–302. doi: 10.1016/j.ejps.2008.05.005.
  • Gottschalk T, Grönniger B, Ludwig E, Wolbert F, Feuerbach T, Sadowski G, Thommes M. 2022. Influence of process temperature and residence time on the manufacturing of amorphous solid dispersions in hot melt extrusion. Pharm Dev Technol. 27(3):313–318. doi: 10.1080/10837450.2022.2051549.
  • Gupta SS, Solanki N, Serajuddin ATM. 2016. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: affinisolTM HPMC HME polymers. AAPS PharmSciTech. 17(1):148–157. doi: 10.1208/s12249-015-0426-6.
  • Han SD, Jung SW, Jang SW, Jung HJ, Son M, Kim BM, Kang MJ. 2015. Preparation of solid dispersion of dronedarone hydrochloride with Soluplus(®) by hot melt extrusion technique for enhanced drug release. Chem Pharm Bull (Tokyo). 63(4):295–299. doi: 10.1248/cpb.c14-00725.
  • Hancock BC, Parks M. 2000. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 17(4):397–404. doi: 10.1023/a:1007516718048.
  • Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. 2016. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm. 13(5):1467–1481. doi: 10.1021/acs.molpharmaceut.5b00863.
  • Hörmann TR, Jäger N, Funke A, Mürb R-K, Khinast JG, Paudel A. 2018. Formulation performance and processability window for manufacturing a dual-polymer amorphous solid dispersion via hot-melt extrusion and strand pelletization. Int J Pharm. 553(1–2):408–421. doi: 10.1016/j.ijpharm.2018.10.035.
  • Huang W, Mandal T, Larson RG. 2017. Computational modeling of hydroxypropyl-methylcellulose acetate succinate (HPMCAS) and phenytoin interactions: A systematic coarse-graining approach. Mol Pharm. 14(3):733–745. doi: 10.1021/acs.molpharmaceut.6b01013.
  • Huang J, Wigent RJ, Schwartz JB. 2006. Nifedipine molecular dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blends for controlled drug delivery: effect of matrix composition. Drug Dev Ind Pharm. 32(10):1185–1197. doi: 10.1080/03639040600832827.
  • Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. 2013. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 48(4–5):758–766. doi: 10.1016/j.ejps.2013.01.004.
  • Inam S, Irfan M, Lali NUA, Khalid Syed H, Asghar S, Khan IU, Khan S-U-D, Iqbal MS, Zaheer I, Khames A, et al. 2022. Development and characterization of Eudragit® EPO-based solid dispersion of rosuvastatin calcium to foresee the impact on solubility, dissolution and antihyperlipidemic activity. Pharmaceuticals. 15(4):492. doi: 10.3390/ph15040492.
  • Indulkar AS, Lou X, Zhang GGZ, Taylor LS. 2019. Insights into the dissolution mechanism of ritonavir-copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. Mol Pharm. 16(3):1327–1339. doi: 10.1021/acs.molpharmaceut.8b01261.
  • Iyer R, Hegde S, Zhang Y-E, Dinunzio J, Singhal D, Malick A, Amidon G. 2013. The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. J Pharm Sci. 102(10):3604–3613. doi: 10.1002/jps.23661.
  • Iyer R, Jovanovska VP, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. 2021. Amorphous solid dispersions (ASDs): the influence of material properties, manufacturing processes and analytical technologies in drug product development. Pharmaceutics. 13(10):1682. doi: 10.3390/pharmaceutics13101682.
  • Jermain SV, Miller D, Spangenberg A, Lu X, Moon C, Su Y, Williams RO. 2019. Homogeneity of amorphous solid dispersions - an example with KinetiSol®. Drug Dev Ind Pharm. 45(5):724–735. doi: 10.1080/03639045.2019.1569037.
  • Jog R, Gokhale R, Burgess DJ. 2016. Solid state drug-polymer miscibility studies using the model drug ABT-102. Int J Pharm. 509(1–2):285–295. doi: 10.1016/j.ijpharm.2016.05.068.
  • Jung JY, Yoo SD, Lee SH, Kim KH, Yoon DS, Lee KH. 1999. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 187(2):209–218. doi: 10.1016/s0378-5173(99)00191-x.
  • Kallakunta VR, Sarabu S, Bandari S, Batra A, Bi V, Durig T, Repka MA. 2020. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: effect of formulation and process parameters for a low glass transition temperature drug. J Drug Deliv Sci Technol. 58:101395. doi: 10.1016/j.jddst.2019.101395.
  • Kamar N, Cassuto E, Piotti G, Govoni M, Ciurlia G, Geraci S, Poli G, Nicolini G, Mariat C, Essig M, et al. 2019. Pharmacokinetics of prolonged-release once-daily formulations of tacrolimus in de novo kidney transplant recipients: a randomized, parallel-group, open-Label, multicenter study. Adv Ther. 36(2):462–477. doi: 10.1007/s12325-018-0855-1.
  • Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. 2021. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci. 157:105642. doi: 10.1016/j.ejps.2020.105642.
  • Kapourani A, Vardaka E, Katopodis K, Kachrimanis K, Barmpalexis P. 2019. Rivaroxaban polymeric amorphous solid dispersions: Moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur J Pharm Biopharm. 145:98–112. doi: 10.1016/j.ejpb.2019.10.010.
  • Kararli TT, Hurlbut JB, Needham TE. 1990. Glass–rubber transitions of cellulosic polymers by dynamic mechanical analysis. J Pharm Sci. 79(9):845–848. doi: 10.1002/jps.2600790922.
  • Kaushal AM, Gupta P, Bansal AK. 2004. Amorphous drug delivery systems: molecular aspects, design, and performance. Crit Rev Ther Drug Carrier Syst. 21(3):133–193. doi: 10.1615/critrevtherdrugcarriersyst.v21.i3.10.
  • Kaushik R, Budhwar V, Kaushik D. 2020. An overview on recent patents and technologies on solid dispersion. Recent Pat Drug Deliv Formul. 14(1):63–74. doi: 10.2174/1872211314666200117094406.
  • Keen JM, Martin C, Machado A, Sandhu H, McGinity JW, DiNunzio JC. 2014. Investigation of process temperature and screw speed on properties of a pharmaceutical solid dispersion using corotating and counter-rotating twin-screw extruders. J Pharm Pharmacol. 66(2):204–217. doi: 10.1111/jphp.12106.
  • Kim KT, Lee JY, Lee MY, Song CK, Choi JH, Kim DD. 2011. Solid dispersions as a drug delivery system. J Pharm Investig. 41(3):125–142. doi: 10.4333/KPS.2011.41.3.125.
  • Kini A, Patel SB. 2017. Phase behavior, intermolecular interaction, and solid state characterization of amorphous solid dispersion of Febuxostat. Pharm Dev Technol. 22(1):45–57. doi: 10.3109/10837450.2016.1138130.
  • Knopp MM, Nguyen JH, Becker C, Francke NM, Jørgensen EB, Holm P, Holm R, Mu H, Rades T, Langguth P. 2016. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions. Eur J Pharm Biopharm. 101:145–151. doi: 10.1016/j.ejpb.2016.02.007.
  • Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T. 2015. Influence of polymer molecular weight on drug-polymer solubility: A comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J Pharm Sci. 104(9):2905–2912. doi: 10.1002/jps.24410.
  • Kolter K, Karl M, Gryczke A, Se B. 2012. Hot-melt extrusion with BASF pharma polymers extrusion compendium. 2nd revised ed. Ludwigshafen: BASF SE.
  • Konno H, Handa T, Alonzo DE, Taylor LS. 2008. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 70(2):493–499. doi: 10.1016/j.ejpb.2008.05.023.
  • Konno H, Taylor LS. 2006. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 95(12):2692–2705. doi: 10.1002/jps.20697.
  • Krummnow A, Danzer A, Voges K, Dohrn S, Kyeremateng SO, Degenhardt M, Sadowski G. 2022. Explaining the release mechanism of ritonavir/PVPVA amorphous solid dispersions. Pharmaceutics. 14(9):1904. doi: 10.3390/pharmaceutics14091904.
  • Kurakula M, Rao GSNK. 2020. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. 60:102046. doi: 10.1016/j.jddst.2020.102046.
  • Kushida I, Gotoda M. 2013. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method. Drug Dev Ind Pharm. 39(10):1582–1588. doi: 10.3109/03639045.2012.679279.
  • Kyeremateng SO, Voges K, Dohrn S, Sobich E, Lander U, Weber S, Gessner D, Evans RC, Degenhardt M. 2022. A hot-melt extrusion risk assessment classification system for amorphous solid dispersion formulation development. Pharmaceutics. 14(5):1044. doi: 10.3390/pharmaceutics14051044.
  • Lakshman D, Chegireddy M, Hanegave GK, Sree KN, Kumar N, Lewis SA, Dengale SJ. 2020. Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. Eur J Pharm Sci. 142:105137. doi: 10.1016/j.ejps.2019.105137.
  • Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 50(1):47–60. doi: 10.1016/s0939-6411(00)00076-x.
  • [LCP] CSE no. 04. 2008. Life cycle pharma launches its first product in the U.S. 2008 Feb 21. Fierce Biotech. [accessed 2023 Apr 15]. https://www.fiercebiotech.com/.
  • Lin X, Hu Y, Liu L, Su L, Li N, Yu J, Tang B, Yang Z. 2018. Physical stability of amorphous solid dispersions: a physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm Res. 35(6):125. doi: 10.1007/s11095-018-2408-3.
  • Lindfors L, Forssén S, Westergren J, Olsson U. 2008. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 325(2):404–413. doi: 10.1016/j.jcis.2008.05.034.
  • Linn M, Collnot E-M, Djuric D, Hempel K, Fabian E, Kolter K, Lehr C-M. 2012. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci. 45(3):336–343. doi: 10.1016/j.ejps.2011.11.025.
  • Liu P, Zhou JY, Chang JH, Liu XG, Xue HF, Wang RX, Li ZS, Li CS, Wang J, Liu CZ. 2020. Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: development, characterization and oral bioavailability. Drug Des Devel Ther. 14:2959–2975. doi: 10.2147/DDDT.S253405.
  • Loftsson T, Brewster ME. 2010. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 62(11):1607–1621. doi: 10.1111/j.2042-7158.2010.01030.x.
  • Lu J, Cuellar K, Hammer NI, Jo S, Gryczke A, Kolter K, Langley N, Repka MA. 2016a. Solid-state characterization of felodipine-soluplus amorphous solid dispersions. Drug Dev Ind Pharm. 42(3):485–496. doi: 10.3109/03639045.2015.1104347.
  • Luebbert C, Huxoll F, Sadowski G. 2017. Amorphous-amorphous phase separation in API/polymer formulations. Molecules. 22(2):296. doi: 10.3390/molecules22020296.
  • Lu Z, Yang Y, Covington R-A, Bi YV, Dürig T, Ilies MA, Fassihi R. 2016b. Supersaturated controlled release matrix using amorphous dispersions of glipizide. Int J Pharm. 511(2):957–968. doi: 10.1016/j.ijpharm.2016.07.072.
  • Matsumoto T, Zografi G. 1999. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 16(11):1722–1728. doi: 10.1023/a:1018906132279.
  • Mayne Pharma. 2023. Mayne Pharma: SUBA® bioavailability technology. [accessed 2023 Apr 15]. https://www.maynepharma.com/.
  • Medarević D, Djuriš J, Barmpalexis P, Kachrimanis K, Ibrić S. 2019. Analytical and computational methods for the estimation of drug-polymer solubility and miscibility in solid dispersions development. Pharmaceutics. 11(8):372. doi: 10.3390/pharmaceutics11080372.
  • Meng F, Dave V, Chauhan H. 2015. Qualitative and quantitative methods to determine miscibility in amorphous drug-polymer systems. Eur J Pharm Sci. 77:106–111. doi: 10.1016/j.ejps.2015.05.018.
  • Miller DA, Keen JM. 2014. KinetiSol®-based amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions. New York (NY): Springer; p. 567–577.
  • Milne M, Liebenberg W, Aucamp M. 2015. The stabilization of amorphous zopiclone in an amorphous solid dispersion. AAPS PharmSciTech. 16(5):1190–1202. doi: 10.1208/s12249-015-0302-4.
  • Mohapatra S, Samanta S, Kothari K, Mistry P, Suryanarayanan R. 2017. Effect of polymer molecular weight on the crystallization behavior of indomethacin amorphous solid dispersions. Cryst Growth Des. 17(6):3142–3150. doi: 10.1021/acs.cgd.7b00096.
  • Moseson DE, Parker AS, Beaudoin SP, Taylor LS. 2020. Amorphous solid dispersions containing residual crystallinity: influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci. 146:105276. doi: 10.1016/j.ejps.2020.105276.
  • Mudge SJ, Hayes D, Lukas S; Inventors; Mayne Pharma International Pty. Ltd., Assignee. 2018. Itraconazole compositions and dosage forms, and methods of using the same. United States patent US9,272,046.
  • Nair AR, Lakshman YD, Anand VSK, Sree KSN, Bhat K, Dengale SJ. 2020. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 21(8):309. doi: 10.1208/s12249-020-01849-z.
  • Nespi M, Kuhn R, Yen C-W, Lubach JW, Leung D. 2021. Optimization of spray-drying parameters for formulation development at preclinical scale. AAPS PharmSciTech. 23(1):28. doi: 10.1208/s12249-021-02160-1.
  • Nogami H, Nagai T, Kondo A. 1970. Dissolution kinetics of polyvinylpyrrolidone of various molecular weights. Chem Pharm Bull. 18(11):2290–2296. doi: 10.1248/cpb.18.2290.
  • Ohara T, Kitamura S, Kitagawa T, Terada K. 2005. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int J Pharm. 302(1-2):95–102. doi: 10.1016/j.ijpharm.2005.06.019.
  • Okonogi S, Oguchi T, Yonemochi E, Puttipipatkhachorn S, Yamamoto K. 1997. Improved dissolution of ofloxacin via solid dispersion. Int J Pharm. 156(2):175–180. doi: 10.1016/S0378-5173(97)00196-8.
  • Oliveri D, Müller RM. 2022. BASF Pharma solutions excipient accepted into FDA pilot program for novel excipients. New Jersey (US): BASF. [accessed 2023 Apr 15]. https://www.basf.com/.
  • Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. 2020. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 586:119560. doi: 10.1016/j.ijpharm.2020.119560.
  • Patel DD, Anderson BD. 2015. Adsorption of polyvinylpyrrolidone and its impact on maintenance of aqueous supersaturation of indomethacin via crystal growth inhibition. J Pharm Sci. 104(9):2923–2933. doi: 10.1002/jps.24493.
  • Patel BB, Patel JK, Chakraborty S, Shukla D. 2015. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. 23(4):352–365. doi: 10.1016/j.jsps.2013.12.013.
  • Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T. 2007. Preparation of glass solutions of three poorly water soluble drugs by spray drying, melt extrusion and ball milling. Int J Pharm. 336(1):22–34. doi: 10.1016/j.ijpharm.2006.11.030.
  • Patterson JE, James MB, Forster AH, Rades T. 2008. Melt extrusion and spray drying of carbamazepine and dipyridamole with polyvinylpyrrolidone/vinyl acetate copolymers. Drug Dev Ind Pharm. 34(1):95–106. doi: 10.1080/03639040701484627.
  • Paudel A, Worku ZA, Meeus J, Guns S, van den Mooter G. 2013. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 453(1):253–284. doi: 10.1016/j.ijpharm.2012.07.015.
  • Penumetcha SS, Gutta LN, Dhanala H, Yamili S, Challa S, Rudraraju S, Rudraraju S, Rudraraju V. 2016. Hot melt extruded aprepitant-soluplus solid dispersion: preformulation considerations, stability and in vitro study. Drug Dev Ind Pharm. 42(10):1609–1620. doi: 10.3109/03639045.2016.1160105.
  • Per Holm V; Inventors; Lifecycle Pharma A/S, Assignee. 2011. Solid dispersions comprising Tacrolimus. United States patent US7994214.
  • Pignatello R, Corsaro R, Bonaccorso A, Zingale E, Carbone C, Musumeci T. 2022. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv Transl Res. 12(8):1991–2006. doi: 10.1007/s13346-022-01182-x.
  • Pinto JMO, Rengifo AFC, Mendes C, Leão AF, Parize AL, Stulzer HK. 2020. Understanding the interaction between Soluplus® and biorelevant media components. Colloids Surf B Biointerfaces. 187:110673. doi: 10.1016/j.colsurfb.2019.110673.
  • Pisay M, Yarlagadda DL, Vullendula SKA, Bhat K, Kunnatur Balasundara K, Mutalik S. 2023. Effervescence-induced amorphous solid dispersions with improved drug solubility and dissolution. Pharm Dev Technol. 28(2):176–189. doi: 10.1080/10837450.2023.2172039.
  • Pu Y, Menger R, Tong Z, Gaebele T. 2022. Development of an enhanced formulation to minimize pharmacokinetic variabilities of a weakly basic drug compound. Pharm Dev Technol. 27(4):406–413. doi: 10.1080/10837450.2022.2070206.
  • Punčochová K, Ewing A v, Gajdošová M, Sarvašová N, Kazarian SG, Beránek J, Štěpánek F. 2015. Identifying the mechanisms of drug release from amorphous solid dispersions using MRI and ATR-FTIR spectroscopic imaging. Int J Pharm. 483(1–2):256–267. doi: 10.1016/j.ijpharm.2015.02.035.
  • Que C, Qi Q, Zemlyanov DY, Mo H, Deac A, Zeller M, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. 2020. Evidence for halogen bonding in amorphous solid dispersions. Cryst Growth Des. 20(5):3224–3235. doi: 10.1021/acs.cgd.0c00073.
  • Rahman M, Coelho A, Tarabokija J, Ahmad S, Radgman K, Bilgili E. 2020. Synergistic and antagonistic effects of various amphiphilic polymer combinations in enhancing griseofulvin release from ternary amorphous solid dispersions. Eur J Pharm Sci. 150:105354. doi: 10.1016/j.ejps.2020.105354.
  • Rauseo AM, Mazi P, Lewis P, Burnett B, Mudge S, Spec A. 2021. Bioavailability of single-dose SUBA-itraconazole compared to conventional itraconazole under fasted and fed conditions. Antimicrob Agents Chemother. 65(8):e0013421. doi: 10.1128/AAC.00134-21.
  • Ré MI. 2006. Formulating drug delivery systems by spray drying. Drying Technol. 24(4):433–446. doi: 10.1080/07373930600611877.
  • Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS. 2009. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 6(5):1492–1505. doi: 10.1021/mp900050c.
  • Saha SK, Joshi A, Singh R, Jana S, Dubey K. 2023. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol. 81:104259. doi: 10.1016/j.jddst.2023.104259.
  • Sahoo NG, Abbas A, Judeh Z, Li CM, Yuen K-H. 2009. Solubility enhancement of a poorly water-soluble anti-malarial drug: experimental design and use of a modified multifluid nozzle pilot spray drier. J Pharm Sci. 98(1):281–296. doi: 10.1002/jps.21399.
  • Sakurai A, Sakai T, Sako K, Maitani Y. 2012. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study. Chem Pharm Bull (Tokyo). 60(4):459–464. doi: 10.1248/cpb.60.459.
  • Sarpal K, Delaney S, Zhang GGZ, Munson EJ. 2019. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug-polymer interactions. Mol Pharm. 16(12):4836–4851. doi: 10.1021/acs.molpharmaceut.9b00731.
  • Sarpal K, Munson EJ. 2021. Amorphous solid dispersions of felodipine and nifedipine with Soluplus®: Drug-polymer miscibility and intermolecular interactions. J Pharm Sci. 110(4):1457–1469. doi: 10.1016/j.xphs.2020.12.022.
  • Shamma RN, Basha M. 2013. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 237:406–414. doi: 10.1016/j.powtec.2012.12.038.
  • Sharma KS, Sahoo J, Agrawal S, Kumari A. 2019. Solid dispersions: a technology for improving bioavailability. JAPLR. 8(4):127–133. doi: 10.15406/japlr.2019.08.00326.
  • Shi N-Q, Lai H-W, Zhang Y, Feng B, Xiao X, Zhang H-M, Li Z-Q, Qi X-R. 2018. On the inherent properties of soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol. 23(6):573–586. doi: 10.1080/10837450.2016.1256409.
  • Shi X, Xu T, Huang W, Fan B, Sheng X. 2019. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer(s) interactions. AAPS PharmSciTech. 20(4):143. doi: 10.1208/s12249-019-1358-3.
  • Simões MF, Pinto RMA, Simões S. 2019. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today. 24(9):1749–1768. doi: 10.1016/j.drudis.2019.05.013.
  • Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, Moldenaers P, van Humbeeck J, van den Mooter G. 2016. Effect of compression on the molecular arrangement of itraconazole-soluplus solid dispersions: induction of liquid Crystals or Exacerbation of Phase Separation? Mol Pharm. 13(6):1879–1893. doi: 10.1021/acs.molpharmaceut.6b00046.
  • Singh A, van den Mooter G. 2016. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 100:27–50. doi: 10.1016/j.addr.2015.12.010.
  • Slámová M, Školáková T, Školáková A, Patera J, Zámostný P. 2020. Preparation of solid dispersions with respect to the dissolution rate of active substance. J Drug Deliv Sci Technol. 56:101518. doi: 10.1016/j.jddst.2020.101518.
  • Smeets A, Koekoekx R, Clasen C, van den Mooter G. 2018. Amorphous solid dispersions of darunavir: comparison between spray drying and electrospraying. Eur J Pharm Biopharm. 130:96–107. doi: 10.1016/j.ejpb.2018.06.021.
  • Solanki NG, Lam K, Tahsin M, Gumaste SG, Shah AV, Serajuddin ATM. 2019. Effects of surfactants on itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: miscibility and drug release. J Pharm Sci. 108(4):1453–1465. doi: 10.1016/j.xphs.2018.10.058.
  • Song B, Wang J, Lu S, Shan L. 2020. Andrographolide solid dispersions formulated by Soluplus to enhance interface wetting, dissolution, and absorption. J Appl Polym Sci. 137(6):48354. doi: 10.1002/app.48354.
  • Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D. 2013. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm. 452(1-2):73–81. doi: 10.1016/j.ijpharm.2013.04.037.
  • Strojewski D, Krupa A. 2022. Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions. Polim Med. 52(1):19–29. doi: 10.17219/pim/150267.
  • Sugihara H, Taylor LS. 2018. Evaluation of pazopanib phase behavior following pH-induced supersaturation. Mol Pharm. 15(4):1690–1699. doi: 10.1021/acs.molpharmaceut.8b00081.
  • Sui X, Chu Y, Zhang J, Zhang H, Wang H, Liu T, Han C. 2020. The effect of PVP molecular weight on dissolution behavior and physicochemical characterization of glycyrrhetinic acid solid dispersions. Adv Polym Technol. 2020:1–13. doi: 10.1155/2020/8859658.
  • Tambe S, Jain D, Meruva SK, Rongala G, Juluri A, Nihalani G, Mamidi HK, Nukala PK, Bolla PK. 2022. Recent advances in amorphous solid dispersions: preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics. 14(10):2203. doi: 10.3390/pharmaceutics14102203.
  • Tan DK, Davis DA, Miller DA, Williams RO, Nokhodchi A. 2020. Innovations in thermal processing: hot-melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 21(8):312. doi: 10.1208/s12249-020-01854-2.
  • Taylor LS, Zografi G. 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 14(12):1691–1698. doi: 10.1023/a:1012167410376.
  • Temtem M. 2018. The coming of age of amorphous solid dispersions. Pharma’s Almanac. [accessed 2023 Apr 15]. https://www.pharmasalmanac.com/articles/the-coming-of-age-of-amorphous-solid-dispersions.
  • Thiry J, Krier F, Evrard B. 2015. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm. 479(1):227–240. doi: 10.1016/j.ijpharm.2014.12.036.
  • Thybo P, Hovgaard L, Lindeløv JS, Brask A, Andersen SK. 2008. Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion. Pharm Res. 25(7):1610–1620. doi: 10.1007/s11095-008-9565-8.
  • Tiwari RV, Patil H, Repka MA. 2016. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin Drug Deliv. 13(3):451–464. doi: 10.1517/17425247.2016.1126246.
  • Tolsura. 2023. Advanced antifungal delivery technology. Mayne Pharma. [accessed 2023 Apr 15]. https://tolsura.com/about-tolsura/.
  • Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. 2019. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 11(3):132. doi: 10.3390/pharmaceutics11030132.
  • Tran TTD, Tran PHL. 2020. Molecular interactions in solid dispersions of poorly water-soluble drugs. Pharmaceutics. 12(8):745. doi: 10.3390/pharmaceutics12080745.
  • Trasi NS, Purohit HS, Taylor LS. 2017. Evaluation of the crystallization tendency of commercially available amorphous tacrolimus formulations exposed to different stress conditions. Pharm Res. 34(10):2142–2155. doi: 10.1007/s11095-017-2221-4.
  • Tremblay S, Nigro V, Weinberg J, Woodle ES, Alloway RR. 2017. A steady-state head-to-head pharmacokinetic comparison of All FK-506 (tacrolimus) formulations (ASTCOFF): an open-label, prospective, randomized, two-arm, three-period crossover study. Am J Transplant. 17(2):432–442. doi: 10.1111/ajt.13935.
  • Tsinman O, Tsinman K, Ali S. 2015. EXCIPIENT UPDATE – Soluplus®: An understanding of supersaturation from amorphous solid dispersions. Drug Development & Delivery; [accessed 2023 Apr 15]. https://drug-dev.com/.
  • Turner DT, Schwartz A. 1985. The glass transition temperature of poly(N-vinyl pyrrolidone) by differential scanning calorimetry. Polymer. 26(5):757–762. doi: 10.1016/0032-3861(85)90114-4.
  • Ueda K, Okada H, Zhao Z, Higashi K, Moribe K. 2020. Application of solid-state 13C relaxation time to prediction of the recrystallization inhibition strength of polymers on amorphous felodipine at low polymer loading. Int J Pharm. 581:119300. doi: 10.1016/j.ijpharm.2020.119300.
  • Ueno Y, Yonemochi E, Tozuka Y, Yamamura S, Oguchi T, Yamamoto K. 1998. Characterization of amorphous ursodeoxycholic acid prepared by spray-drying. J Pharm Pharmacol. 50(11):1213–1219. doi: 10.1111/j.2042-7158.1998.tb03336.x.
  • Vasconcelos T, Marques S, das Neves J, Sarmento B. 2016. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 100:85–101. doi: 10.1016/j.addr.2016.01.012.
  • Vasconcelos T, Sarmento B, Costa P. 2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 12(23-24):1068–1075. doi: 10.1016/j.drudis.2007.09.005.
  • Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, et al. 2021. Current challenges and future perspectives in oral absorption research: an opinion of the UNGAP network. Adv Drug Deliv Rev. 171:289–331.,. doi: 10.1016/j.addr.2021.02.001.
  • Vo CLN, Park C, Lee BJ. 2013. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 85(3 Pt B):799–813. doi: 10.1016/j.ejpb.2013.09.007.
  • von Einsiedel J, Thölking G, Wilms C, Vorona E, Bokemeyer A, Schmidt HH, Kabar I, Hüsing-Kabar A. 2020. Conversion from standard-release tacrolimus to MeltDose® tacrolimus (LCPT) improves renal function after liver transplantation. JCM. 9(6):1654. doi: 10.3390/jcm9061654.
  • Wang S, Langrish T. 2009. A review of process simulations and the use of additives in spray drying. Food Res Int. 42(1):13–25. doi: 10.1016/j.foodres.2008.09.006.
  • Wang A, Lu Y, Zhu R, Li S, Ma X. 2009. Effect of process parameters on the performance of spray dried hydroxyapatite microspheres. Powder Technol. 191(1-2):1–6. doi: 10.1016/j.powtec.2008.10.020.
  • Wegiel LA, Zhao Y, Mauer LJ, Edgar KJ, Taylor LS. 2014. Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. Pharm Dev Technol. 19(8):976–986. doi: 10.3109/10837450.2013.846374.
  • Weissig V, Pettinger TK, Murdock N. 2014. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 9:4357–4373. doi: 10.2147/IJN.S46900.
  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. 2013. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 65(1):315–499. doi: 10.1124/pr.112.005660.
  • Wu JX, Yang M, Berg F v d, Pajander J, Rades T, Rantanen J. 2011. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur J Pharm Sci. 44(5):610–620. doi: 10.1016/j.ejps.2011.10.008.
  • Wyttenbach N, Kuentz M. 2017. Glass-forming ability of compounds in marketed amorphous drug products. Eur J Pharm Biopharm. 112:204–208. doi: 10.1016/j.ejpb.2016.11.031.
  • Xie T, Taylor LS. 2016a. Dissolution performance of high drug loading celecoxib amorphous solid dispersions formulated with polymer combinations. Pharm Res. 33(3):739–750. doi: 10.1007/s11095-015-1823-y.
  • Xie T, Taylor LS. 2016b. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives. Mol Pharm. 13(3):873–884. doi: 10.1021/acs.molpharmaceut.5b00798.
  • Xie T, Taylor LS. 2017. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 106(1):100–110. doi: 10.1016/j.xphs.2016.06.017.
  • Xiong X, Zhang M, Hou Q, Tang P, Suo Z, Zhu Y, Li H. 2019. Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Mater Sci Eng C Mater Biol Appl. 105:110012. doi: 10.1016/j.msec.2019.110012.
  • Xu H, Liu L, Li X, Ma J, Liu R, Wang S. 2019. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharm Sci. 14(4):445–454. doi: 10.1016/j.ajps.2018.08.001.
  • Yan T, Zhang Y, Ji M, Wang Z, Yan T. 2019. Preparation of irbesartan composite microparticles by supercritical aerosol solvent extraction system for dissolution enhancement. J Supercrit Fluids. 153:104594. doi: 10.1016/j.supflu.2019.104594.
  • Yang F, Su Y, Brown CD, DiNunzio J. 2021. Solubilizing temperature of crystalline drug in polymer carrier: A rheological investigation on a posaconazole-copovidone system with low drug load. Eur J Pharm Biopharm. 164:28–35. doi: 10.1016/j.ejpb.2021.04.015.
  • Zhang Q, Zhao Y, Zhao Y, Ding Z, Fan Z, Zhang H, Liu M, Wang Z, Han J. 2018. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surf B Biointerfaces. 172:118–126. doi: 10.1016/j.colsurfb.2018.08.030.
  • Zi P, Zhang C, Ju C, Su Z, Bao Y, Gao J, Sun J, Lu J, Zhang C. 2019. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus. Eur J Pharm Sci. 134:233–245. doi: 10.1016/j.ejps.2019.04.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.