68
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pharmaceutical applications and requirements of resins for printing by digital light processing (DLP)

&
Received 10 Jun 2023, Accepted 16 Apr 2024, Published online: 25 Apr 2024

References

  • Adamov I, Stanojević G, Medarević D, Ivković B, Kočović D, Mirković D, Ibrić S. 2022. Formulation and characterization of immediate-release oral dosage forms with zolpidem tartrate fabricated by digital light processing (DLP) 3D printing technique. Int J Pharm. 624:122046. doi:10.1016/j.ijpharm.2022.122046.
  • Agarwal T, Costantini M, Maiti TK. 2021. Extrusion 3D printing with Pectin-based ink formulations: recent trends in tissue engineering and food manufacturing. Biomedical Engineering Advances. 2:100018. doi:10.1016/j.bea.2021.100018.
  • Ali Z, Türeyen EB, Karpat Y, Çakmakcı M. 2016. Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP. 42:87–90. doi:10.1016/j.procir.2016.02.194.
  • Applegate MB, Partlow BP, Coburn J, Marelli B, Pirie C, Pineda R, Kaplan DL, Omenetto FG. 2016. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv Mater. 28(12):2417–2420. doi:10.1002/ADMA.201504527.
  • Bagheri A, Asadi-Eydivand M, Rosser AA, Fellows CM, Brown TC. 2023. 3D printing of customized drug delivery systems with controlled architecture via reversible addition-fragmentation chain transfer polymerization. Adv Eng Mater. 25(10):2201785. doi:10.1002/adem.202201785.
  • Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. 2022. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication. 14(4):045012. doi:10.1088/1758-5090/ac8768.
  • Bhamare N, Tardalkar K, Khadilkar A, Parulekar P, Joshi MG. 2022. Tissue engineering of human ear pinna. Cell Tissue Bank. 23(3):441–457. doi:10.1007/s10561-022-09991-7.
  • Bloomquist CJ, Mecham MB, Paradzinsky MD, Janusziewicz R, Warner SB, Luft JC, Mecham SJ, Wang AZ, DeSimone JM. 2018. Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Release. 278:9–23. doi:10.1016/j.jconrel.2018.03.026.
  • Cortés A, Cosola A, Sangermano M, Campo M, Prolongo SG, Fabrizio PC, Jiménez-Suárez A, Chiappone A, Cortés A, Campo M. 2021. DLP 4D-printing of remotely, modularly, and selectively controllable shape memory polymer nanocomposites embedding carbon nanotubes. Adv Funct Materials. 31(50):2106774. doi: 10.1002/adfm.202106774.
  • Erkus H, Bedir T, Kaya E, Tinaz GB, Gunduz O, Chifiriuc MC, Ustundag CB. 2023. Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia (Oxf). 27:101700. doi:10.1016/j.mtla.2023.101700.
  • Ge Q, Li Z, Wang Z, Kowsari K, Zhang W, He X, Zhou J, Fang NX. 2020. Projection micro stereolithography based 3D printing and its applications. Int J Extrem Manuf. 2(2):022004. doi:10.1088/2631-7990/ab8d9a.
  • Gonzalez-Ocegueda PA, Herrera-Saucedo A, Quiñones-Galvan JG, Valero-Luna C, Alvarado-Perea L, Canizales-Davalos L, Martinez-Guajardo G, Bañuelos-Frias A. 2021. DLP fabrication of TiO2 nanoparticle thin films. Mater Lett. 296:129873. doi:10.1016/j.matlet.2021.129873.
  • He Y, Li N, Xiang Z, Rong Y, Zhu L, Huang X. 2022. Natural polyphenol as radical inhibitors used for DLP-based 3D printing of photosensitive gels. Mater Today Commun. 33:104698. doi:10.1016/j.mtcomm.2022.104698.
  • He Y, Wang F, Wang X, Zhang J, Wang D, Huang X. 2021. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater Des. 202:109588. doi:10.1016/j.matdes.2021.109588.
  • Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, Ajiteru O, Sultan MT, Lee OJ, Kim SH, et al. 2020. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 232:119679. doi:10.1016/j.biomaterials.2019.119679.
  • Hossain Rakin R, Kumar H, Rajeev A, Natale G, Menard F, Li ITS, Kim K. 2021. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication. 13(4):044109. doi:10.1088/1758-5090/ac25cb.
  • Huh JT, Moon YW, Park J, Atala A, Yoo JJ, Lee SJ. 2021. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication. 13(3):034103. doi:10.1088/1758-5090/abfd7a.
  • Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S. 2018. 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods. 2(2):1700277. doi:10.1002/SMTD.201700277.
  • Jia S, Yang J, Lau AD-S, Chen F, Bu Y, Cai E, Wang H, Chieng H-E, Sun T, Zhou Z, et al. 2023. Digital light processing-bioprinted poly-NAGA-GelMA-based hydrogel lenticule for precise refractive errors correction. Biofabrication. 15(3):035011. doi:10.1088/1758-5090/accaab.
  • Kadry H, Wadnap S, Xu C, Ahsan F. 2019. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 135:60–67. doi:10.1016/j.ejps.2019.05.008.
  • Kim SH, Kim DY, Lim TH, Park CH. 2020. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Adv Exp Med Biol. 1249:53–66. doi:10.1007/978-981-15-3258-0_4.
  • Kim MH, Lin CC. 2023. Poly(ethylene glycol)-norbornene as a photoclick bioink for digital light processing 3D bioprinting. ACS Appl Mater Interfaces. 15(2):2737–2746. doi:10.1021/acsami.2c20098.
  • Kim SH, Seo YB, Yeon YK, Lee YJ, Park HS, Sultan MT, Lee JM, Lee JS, Lee OJ, Hong H, et al. 2020. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials. 260:120281. doi:10.1016/J.BIOMATERIALS.2020.120281.
  • Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon S, Il, et al. 2018. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 9(1):1620. doi:10.1038/s41467-018-03759-y.
  • Krkobabić M, Medarević D, Pešić N, Vasiljević D, Ivković B, Ibrić S. 2020. Digital light processing (DLP) 3D printing of atomoxetine hydrochloride tablets using photoreactive suspensions. Pharmaceutics. 12(9):833. doi: 10.3390/pharmaceutics12090833.
  • Kumari S, Mondal P, Chatterjee K. 2022. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Carbohydr Polym. 290:119508. doi:10.1016/j.carbpol.2022.119508.
  • Lago MA, Rodríguez-Bernaldo de Quirós A, Sendón R, Bustos J, Nieto MT, Paseiro P. 2015. Photoinitiators: a food safety review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(5):779–798. doi:10.1080/19440049.2015.1014866.
  • Lantean S, Roppolo I, Sangermano M, Hayoun M, Dammak H, Rizza G. 2021. Programming the microstructure of magnetic nanocomposites in DLP 3D printing. Addit Manuf. 47:102343. doi:10.1016/j.addma.2021.102343.
  • Layani M, Wang X, Magdassi S. 2018. Novel materials for 3D printing by photopolymerization. Adv Mater. 30(41):e1706344. doi:10.1002/ADMA.201706344.
  • Liu Z, Liang H, Shi T, Xie D, Chen R, Han X, Shen L, Wang C, Tian Z. 2019. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int. 45(8):11079–11086. doi: 10.1016/j.ceramint.2019.02.195.
  • Lorenz T, Iskandar MM, Baeghbali V, Ngadi MO, Kubow S. 2022. 3D food printing applications related to dysphagia: a narrative review. Foods. 11(12):1789. doi:10.3390/foods11121789.
  • Lu Y, Xiang Z, Li N, Huang X, Song J. 2022. Photocurable epsilon-poly-l-lysine for digital light processing 3D printing. Mater Lett. 318:132169. doi:10.1016/j.matlet.2022.132169.
  • Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, et al. 2016. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A. 113(8):2206–2211. doi:10.1073/pnas.1524510113.
  • Madni A, Kousar R, Naeem N, Wahid F. 2021. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. Journal of Bioresources and Bioproducts. 6(1):11–25. doi:10.1016/j.jobab.2021.01.002.
  • Mandrycky C, Wang Z, Kim K, Kim DH. 2016. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 34(4):422–434. doi:10.1016/j.biotechadv.2015.12.011.
  • Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. 2020. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C Mater Biol Appl. 109:110625.
  • Martinez JS, Peterson S, Hoel CA, Erno DJ, Murray T, Boyd L, Her JH, McLean N, Davis R, Ginty F, et al. 2022. High resolution DLP stereolithography to fabricate biocompatible hydroxyapatite structures that support osteogenesis. PLoS One. 17(8):e0272283. doi: 10.1371/journal.pone.0272283.
  • Mathew E, Pitzanti G, Gomes Dos Santos AL, Lamprou DA. 2021. Optimization of printing parameters for digital light processing 3d printing of hollow microneedle arrays. Pharmaceutics. 13(11):1837. doi:10.3390/pharmaceutics13111837.
  • Mau R, Nazir J, John S, Seitz H. 2019. Preliminary study on 3D printing of PEGDA hydrogels for frontal sinus implants using digital light processing (DLP). Current Directions in Biomedical Engineering. 5(1):249–252. doi:10.1515/cdbme-2019-0063.
  • Melilli G, Carmagnola I, Tonda-Turo C, Pirri F, Ciardelli G, Sangermano M, Hakkarainen M, Chiappone A. 2020. DLP 3D printing meets lignocellulosic biopolymers: carboxymethyl cellulose inks for 3D biocompatible hydrogels. Polymers (Basel). 12(8):1655. doi:10.3390/polym12081655.
  • Meng Z, He Y, Wang F, Hang R, Zhang X, Huang X, Yao X. 2021. Enhancement of antibacterial and mechanical properties of photocurable ϵ-Poly- l -lysine hydrogels by tannic acid treatment. ACS Appl Bio Mater. 4(3):2713–2722. doi:10.1021/acsabm.0c01633.
  • Na K, Shin S, Lee H, Shin D, Baek J, Kwak H, Park M, Shin J, Hyun J. 2018. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J Ind Eng Chem. 61:340–347. doi:10.1016/j.jiec.2017.12.032.
  • Nguyen MTH, Kim SY, Jeong TH, Kim JH, Cho HS, Ha TH, Ahn SJ, Kim YH. 2022. Preparation and stability of PEGDA/GO conductive materials by DLP 3D printing. Electron Mater Lett. 18(3):275–281. doi:10.1007/s13391-022-00338-8.
  • Noh I, Kim N, Tran HN, Lee J, Lee C. 2019. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res. 23(1):3. doi:10.1186/s40824-018-0152-8.
  • Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, Mesicek J. 2021. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers (Basel). 13(4):598. doi:10.3390/polym13040598.
  • Preobrazhenskiy II, Tikhonov AA, Evdokimov PV, Shibaev AV, Putlyaev VI. 2021. DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics. 6:100115. doi:10.1016/j.oceram.2021.100115.
  • Regassa Hunde B, Debebe Woldeyohannes A. 2022. Future prospects of computer-aided design (CAD) – a review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results in Engineering. 14:100478. doi:10.1016/j.rineng.2022.100478.
  • Scully D, Sfyri P, Wilkinson HN, Acebes-Huerta A, Verpoorten S, Muñoz-Turrillas MC, Parnell A, Patel K, Hardman MJ, Gutiérrez L, et al. 2020. Optimising platelet secretomes to deliver robust tissue-specific regeneration. J Tissue Eng Regen Med. 14(1):82–98. doi:10.1002/TERM.2965.
  • Seo JW, Kim GM, Choi Y, Cha JM, Bae H. 2022. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int J Mol Sci. 23(10):5428.
  • Seo JW, Shin SR, Lee MY, Cha JM, Min KH, Lee SC, Shin SY, Bae H. 2021. Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohydr Polym. 251:117036. doi:10.1016/j.carbpol.2020.117036.
  • Shen Y, Tang H, Huang X, Hang R, Zhang X, Wang Y, Yao X. 2020. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym. [Internet]. 235:115970. [accessed 2023 Mar 27]. https://linkinghub.elsevier.com/retrieve/pii/S0144861720301442. doi:10.1016/j.carbpol.2020.115970.
  • Sheng L, Li M, Zheng S, Qi J. 2022. Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing. J Biomater Appl. 36(7):1173–1187. doi:10.1177/08853282211053081.
  • Shin D, Hyun J. 2021. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem. 95:126–133. doi:10.1016/j.jiec.2020.12.011.
  • Shin JH, Kang HW. 2018. The development of gelatin-based bio-ink for use in 3D hybrid bioprinting. Int J Precis Eng Manuf. 19(5):767–771. doi:10.1007/s12541-018-0092-1.
  • Sierra-Sánchez A, Fernández-González A, Lizana-Moreno A, Espinosa-Ibáñez O, Martinez-Lopez A, Guerrero-Calvo J, Fernández-Porcel N, Ruiz-García A, Ordóñez-Luque A, Carriel V, et al. 2020. Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: preclinical comparative in vivo study of wound healing. J Eur Acad Dermatol Venereol. 34(10):2414–2427. doi:10.1111/jdv.16342.
  • Sigen A, Zeng M, Johnson M, Creagh-Flynn J, Xu Q, Tai H, Wang W. 2020. Green synthetic approach for photo-cross-linkable methacryloyl hyaluronic acid with a tailored substitution degree. Biomacromolecules. 21(6):2229–2235. doi: 10.1021/acs.biomac.0c00196.
  • Solis DM, Czekanski A. 2022. The effect of the printing temperature on 4D DLP printed pNIPAM hydrogels. Soft Matter. 18(17):3422–3429. doi:10.1039/d2sm00201a.
  • Stanojević G, Medarević D, Adamov I, Pešić N, Kovačević J, Ibrić S. 2020. Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: influence of tablet thickness and drug loading. Molecules. 26(1):111. doi:10.3390/molecules26010111.
  • Suh YJ, Lim TH, Choi HS, Kim MS, Lee SJ, Kim SH, Park CH. 2020. 3D printing and NIR fluorescence imaging techniques for the fabrication of implants. Materials (Basel). 13(21):4819. doi:10.3390/MA13214819.
  • Sultan MT, Lee OJ, Lee JS, Park CH. 2022. Three-dimensional digital light-processing bioprinting using silk fibroin-based bio-ink: recent advancements in biomedical applications. Biomedicines. 10(12):3224. doi:10.3390/biomedicines10123224.
  • Tagami T, Morimura C, Ozeki T. 2021. Effective and simple prediction model of drug release from “ghost tablets” fabricated using a digital light projection-type 3D printer. Int J Pharm. 604:120721. doi: 10.1016/j.ijpharm.2021.120721.
  • Tao J, Zhu S, Zhou N, Wang Y, Wan H, Zhang L, Tang Y, Pan Y, Yang Y, Zhang J, et al. 2022. Nanoparticle-stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv Healthc Mater. 11(12):e2102810. doi: 10.1002/ADHM.202102810.
  • Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, et al. 2016. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. 65(2):737–760. doi:10.1016/j.cirp.2016.05.004.
  • Uchida DT, Bruschi ML. 2023. 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 24(1):41. doi:10.1208/s12249-023-02503-0.
  • Valentinčič J, Peroša M, Jerman M, Sabotin I, Lebar A. 2017. Low cost printer for DLP stereolithography SEAMAC-strengthening the excellence of additive manufacturing capabilities view project icejet view project. SV-JME. 63(10):559–566. doi:10.5545/sv-jme.2017.4591.
  • Vaupel S, Mau R, Kara S, Seitz H, Kragl U, Meyer J. 2023. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured via digital light processing. J Mater Chem B. 11(28):6547–6559. doi:10.1039/d3tb00285c.
  • Vaut L, Juszczyk JJ, Kamguyan K, Jensen KE, Tosello G, Boisen A. 2020. 3D printing of reservoir devices for oral drug delivery: from concept to functionality through design improvement for enhanced mucoadhesion. ACS Biomater Sci Eng. 6(4):2478–2486. doi:10.1021/acsbiomaterials.9b01760.
  • Vivero-Lopez M, Xu X, Muras A, Otero A, Concheiro A, Gaisford S, Basit AW, Alvarez-Lorenzo C, Goyanes A. 2021. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater Sci Eng C Mater Biol Appl. 119:111606. doi:10.1016/j.msec.2020.111606.
  • Wang J, Goyanes A, Gaisford S, Basit AW. 2016. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. [Internet]. [accessed 2023 Apr 1]503(1-2):207–212. https://pubmed.ncbi.nlm.nih.gov/26976500/. doi:10.1016/j.ijpharm.2016.03.016.
  • Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. 2021. Epsilon-poly-L-lysine: recent advances in biomanufacturing and applications. Front Bioeng Biotechnol. 9:748976. doi:10.3389/fbioe.2021.748976.
  • Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 2021. 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics. 13(9):1421. doi:10.3390/pharmaceutics13091421.
  • Xue D, Zhang J, Wang Y, Mei D. 2019. Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness. ACS Biomater Sci Eng. 5(9):4825–4833. doi:10.1021/acsbiomaterials.9b00696.
  • Xu X, Robles-Martinez P, Madla CM, Joubert F, Goyanes A, Basit AW, Gaisford S. 2020. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf. 33:101071. doi:10.1016/j.addma.2020.101071.
  • Yang Z, Ren X, Liu Y. 2021. Multifunctional 3D printed porous GelMA/xanthan gum based dressing with biofilm control and wound healing activity. Mater Sci Eng C Mater Biol Appl. 131:112493. doi:10.1016/j.msec.2021.112493.
  • Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, Yang R. 2019. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines (Basel). 11(1):17. doi:10.3390/mi11010017.
  • Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, et al. 2020. A 3D-printed self-adhesive bandage with drug release for peripheral nerve repair. Adv Sci (Weinh). 7(23):2002601. doi:10.1002/advs.202002601.
  • Zhou C, Li P, Qi X, Sharif ARM, Poon YF, Cao Y, Chang MW, Leong SSJ, Chan-Park MB. 2011. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials. 32(11):2704–2712. doi:10.1016/j.biomaterials.2010.12.040.
  • Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 2016. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 40:103–112. doi:10.1016/J.COPBIO.2016.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.