0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extracellular vesicle-based formulation of doxorubicin: drug loading optimization, characterization, and cytotoxicity evaluation in tumor spheroids

, , , &
Received 15 Apr 2024, Accepted 22 Jul 2024, Accepted author version posted online: 29 Jul 2024
Accepted author version

References

  • Abrahams C, Woudberg NJ, Lecour S. 2022. Anthracycline-induced cardiotoxicity: Targeting high-density lipoproteins to limit the damage? Lipids Health Dis. 21(1):85. doi: 10.1186/s12944-022-01694-y.
  • Aldughaim MS, Muthana M, Alsaffar F, Barker MD. 2020. Specific targeting of PEGylated liposomal doxorubicin (Doxil(®)) to tumour cells using a novel TIMP3 peptide. Molecules. 26(1). doi: 10.3390/molecules26010100.
  • Aloss K, Hamar P. 2023. Recent preclinical and clinical progress in liposomal doxorubicin. Pharmaceutics. 15(3). doi: 10.3390/pharmaceutics15030893.
  • Baddela VS, Nayan V, Rani P, Onteru SK, Singh D. 2016. Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Appl Biochem Biotechnol. 178(3):544-557. doi: 10.1007/s12010-015-1893-7.
  • Balyasnikova IV, Zannikou M, Wang G, Li Y, Duffy JT, Levine RN, Seblani M, Gaikwad H, Simberg D. 2022. Indocarbocyanine nanoparticles extravasate and distribute better than liposomes in brain tumors. J Control Release. 349:413-424. doi: 10.1016/j.jconrel.2022.07.008.
  • Bruno S, Collino F, Iavello A, Camussi G. 2014. Effects of mesenchymal stromal cell-derived extracellular vesicles on tumor growth. Front Immunol. 5:382. doi: 10.3389/fimmu.2014.00382.
  • Campea MA, Lofts A, Xu F, Yeganeh M, Kostashuk M, Hoare T. 2023. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery. ACS Appl Mater Interfaces. 15(21):25324-25338. doi: 10.1021/acsami.3c02575.
  • Chen NN, Zhou KF, Miao Z, Chen YX, Cui JX, Su SW. 2024. Exosomes regulate doxorubicin resistance in breast cancer via miR-34a-5p/NOTCH1. Mol Cell Probes. 76:101964. doi: 10.1016/j.mcp.2024.101964.
  • Chen X, Feng J, Chen W, Shao S, Chen L, Wan H. 2022. Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Commun Signal. 20(1):141. doi: 10.1186/s12964-022-00945-w.
  • Duan M, Zhou D, Ke J, Chen Y, Wu W, Li Y, Ren J, Wang L, Zhang Z, Wang C. 2024. Dual targetable drug delivery system based on cell membrane camouflaged liposome for enhanced tumor targeting and improved anti-tumor efficiency. Colloids Surf B Biointerfaces. 238:113892. doi: 10.1016/j.colsurfb.2024.113892.
  • Farhat W, Yeung V, Kahale F, Parekh M, Cortinas J, Chen L, Ross AE, Ciolino JB. 2022. Doxorubicin-loaded extracellular vesicles enhance tumor cell death in retinoblastoma. Bioengineering (Basel). 9(11). doi: 10.3390/bioengineering9110671.
  • Fazel M, Daeihamed M, Osouli M, Almasi A, Haeri A, Dadashzadeh S. 2018. Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy. Iran J Pharm Res. 17(Suppl2):33-43. doi.
  • Fraguas-Sánchez AI, Martín-Sabroso C, Fernández-Carballido A, Torres-Suárez AI. 2019. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol. 84(4):689-706. doi: 10.1007/s00280-019-03910-6.
  • Gallegos-Martínez S, Choy Buentello D, Pérez-Álvarez KA, Lara-Mayorga IM, Aceves-Colin AE, Zhang YS, Trujillo-de Santiago G, Álvarez MM. 2024. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Biofabrication. doi: 10.1088/1758-5090/ad5765.
  • Gentile P. 2022. Breast cancer therapy: The potential role of mesenchymal stem cells in translational biomedical research. Biomedicines. 10(5). doi: 10.3390/biomedicines10051179.
  • Holub AR, Huo A, Patel K, Thakore V, Chhibber P, Erogbogbo F. 2020. Assessing advantages and drawbacks of rapidly generated ultra-large 3D breast cancer spheroids: Studies with chemotherapeutics and nanoparticles. Int J Mol Sci. 21(12). doi: 10.3390/ijms21124413.
  • Iacopetta D, Ceramella J, Baldino N, Sinicropi MS, Catalano A. 2023. Targeting breast cancer: An overlook on current strategies. Int J Mol Sci. 24(4). doi: 10.3390/ijms24043643.
  • Ichim TE, O’Heeron P, Kesari S. 2018. Fibroblasts as a practical alternative to mesenchymal stem cells. Journal of Translational Medicine. 16(1):212. doi: 10.1186/s12967-018-1536-1.
  • Jain A, Jain SK. 2016. In vitro release kinetics model fitting of liposomes: An insight. Chemistry and Physics of Lipids. 201:28-40. doi: 10.1016/j.chemphyslip.2016.10.005.
  • Lee C, Kumar S, Park J, Choi Y, Clarissa EM, Cho Y-K. 2024. Tonicity-induced cargo loading into extracellular vesicles. Lab on a Chip. 24(7):2069-2079. doi: 10.1039/D3LC00830D.
  • Lennaárd AJ, Mamand DR, Wiklander RJ, El Andaloussi S, Wiklander OPB. 2021. Optimised electroporation for loading of extracellular vesicles with doxorubicin. Pharmaceutics. 14(1). doi: 10.3390/pharmaceutics14010038.
  • Li X-R, Cheng X-H, Zhang G-N, Wang X-X, Huang J-M. 2022. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer. Journal of Ovarian Research. 15(1):96. doi: 10.1186/s13048-022-01029-6.
  • Mardpour S, Ghanian MH, Sadeghi-Abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H. 2019. Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Appl Mater Interfaces. 11(41):37421-37433. doi: 10.1021/acsami.9b10126.
  • Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, Haeri A. 2020. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 113:42-62. doi: 10.1016/j.actbio.2020.06.036.
  • Mehryab F, Rabbani S, Shekari F, Nazari A, Goshtasbi N, Haeri A. 2024. Sirolimus-loaded exosomes as a promising vascular delivery system for the prevention of post-angioplasty restenosis. Drug Deliv Transl Res. 14(1):158-176. doi: 10.1007/s13346-023-01390-z.
  • Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. 2023. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie. 213:139-167. doi: 10.1016/j.biochi.2023.05.010.
  • Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X et al. 2018. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight. 3(8). doi: 10.1172/jci.insight.99263.
  • Mukhopadhya A, Tsiapalis D, McNamee N, Talbot B, O'Driscoll L. 2023. Doxorubicin loading into milk and mesenchymal stem cells' extracellular vesicles as drug delivery vehicles. Pharmaceutics. 15(3). doi: 10.3390/pharmaceutics15030718.
  • Obireddy SR, Lai WF. 2022. ROS-generating amine-functionalized magnetic nanoparticles coupled with carboxymethyl chitosan for pH-responsive release of doxorubicin. Int J Nanomedicine. 17:589-601. doi: 10.2147/ijn.S338897.
  • Shekari F, Nazari A, Assar Kashani S, Hajizadeh-Saffar E, Lim R, Baharvand H. 2021. Pre-clinical investigation of mesenchymal stromal cell-derived extracellular vesicles: a systematic review. Cytotherapy. 23(4):277-284. doi: 10.1016/j.jcyt.2020.12.009.
  • Singh A, Lofts A, Krishnan R, Campea M, Chen L, Wan Y, Hoare T. 2024. The effect of comb length on the in vitro and in vivo properties of self-assembled poly(oligoethylene glycol methacrylate)-based block copolymer nanoparticles. Nanoscale Adv. 6(9):2487-2498. doi: 10.1039/d3na01156a.
  • Siva D, Abinaya S, Rajesh D, Archunan G, Padmanabhan P, Gulyás B, Achiraman S. 2022. Mollification of doxorubicin (DOX)-mediated cardiotoxicity using conjugated chitosan nanoparticles with supplementation of propionic acid. Nanomaterials (Basel). 12(3). doi: 10.3390/nano12030502.
  • Soekmadji C, Li B, Huang Y, Wang H, An T, Liu C, Pan W, Chen J, Cheung L, Falcon-Perez JM et al. 2020. The future of extracellular vesicles as theranostics - an ISEV meeting report. J Extracell Vesicles. 9(1):1809766. doi: 10.1080/20013078.2020.1809766.
  • Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. 2022. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci. 23(5). doi: 10.3390/ijms23052856.
  • Théry C, Amigorena S, Raposo G, Clayton A. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30.
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7(1):1535750. doi: 10.1080/20013078.2018.1535750.
  • Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, Tang L, Ma X, Zhang Y, Wang Y. 2021. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials. 273:120784. doi: 10.1016/j.biomaterials.2021.120784.
  • Wang S, Qiao C, Kong X, Yang J, Guo F, Chen J, Wang W, Zhang B, Xiu H, He Y et al. 2024. Adhesion between EVs and tumor cells facilitated EV-encapsulated doxorubicin delivery via ICAM1. Pharmacol Res. 205:107244. doi: 10.1016/j.phrs.2024.107244.
  • Wang X, Zhao Y, Yan M, Liang X, Zhao N, Lu T. 2024. iRGD mediated pH-responsive mesoporous silica enhances drug accumulation in tumors. Eur J Pharm Sci. 195:106725. doi: 10.1016/j.ejps.2024.106725.
  • Wei H, Chen F, Chen J, Lin H, Wang S, Wang Y, Wu C, Lin J, Zhong G. 2022. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. Int J Nanomedicine. 17:3483-3495. doi: 10.2147/ijn.S372851.
  • Wei H, Chen J, Wang S, Fu F, Zhu X, Wu C, Liu Z, Zhong G, Lin J. 2019. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine. 14:8603-8610. doi: 10.2147/ijn.S218988.
  • Wu J. 2021. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med. 11(8). doi: 10.3390/jpm11080771.
  • Xiao R, Ye J, Li X, Wang X. 2023. Dual size/charge-switchable and multi-responsive gelatin-based nanocluster for targeted anti-tumor therapy. Int J Biol Macromol. 238:124032. doi: 10.1016/j.ijbiomac.2023.124032.
  • Yakavets I, Ayachit M, Kheiri S, Chen Z, Rakhshani F, McWhirter S, Young EWK, Walker GC, Kumacheva E. 2024. A microfluidic platform for evaluating the internalization of liposome drug carriers in tumor spheroids. ACS Appl Mater Interfaces. 16(8):9690-9701. doi: 10.1021/acsami.3c16330.
  • Yamashita S, Imanishi A, Ueki S, Okamoto S, Kimura S, Kiriyama A. 2024. Pharmacokinetic-pharmacodynamic analysis of pH-responsive doxorubicin-releasing micelles with anticancer activity. Mol Pharm. doi: 10.1021/acs.molpharmaceut.3c01171.
  • Yang B, Song BP, Shankar S, Guller A, Deng W. 2021. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci. 78(13):5225-5243. doi: 10.1007/s00018-021-03850-6.
  • Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, Nabipoorashrafi SA, Bashiri Z, Moeinabadi-Bidgoli K, Moradbeygi F et al. 2023. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol. 253(Pt 2):126808. doi: 10.1016/j.ijbiomac.2023.126808.
  • Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. 2019. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J Cancer Res Clin Oncol. 145(3):685-694. doi: 10.1007/s00432-018-02827-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.