1,163
Views
36
CrossRef citations to date
0
Altmetric
Empirical Article

Training early visuo-spatial abilities: A controlled classroom-based intervention study

, , &

References

  • Ansari, D., Donlan, C., Thomas, M. S. C., Ewing, S. A., Peen, T., & Karmiloff-Smith, A. (2003). What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 85(1), 50–62. doi:10.1016/S0022-0965(03)00026-2
  • Arnold, D. H., Fisher, P. H., Doctoroff, G. L., & Dobbs, J. (2002). Accelerating math development in head start classrooms. Journal of Educational Psychology, 94(4), 762–770. doi:10.1037/0022-0663.94.4.762
  • Aunio, P., & Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20(5), 427–435. doi:10.1016/j.lindif.2010.06.003
  • Aunola, K., Leskinen, E., Lerkkanen, M.-K., & Nurmi, J.-E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96(4), 699–713. doi:10.1037/0022-0663.96.4.699
  • Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46(2), 545–551. doi:10.1037/a0017887
  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude presentations infleunce arithmetic learning. Child Development, 79(4), 1016–1031. doi:10.1111/j.1467-8624.2008.01173.x
  • Bouck, E. C., & Flanagan, S. M. (2010). Virtual manipulatives: What they are and how teachers can use them. Intervention in School and Clinic, 45(3), 186–191. doi:10.1177/1053451209349530
  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge University Press.
  • Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269–309. doi:10.1080/07370000802177177
  • Casey, B. M., Dearing, E., Dulaney, A., Heyman, M., & Springer, R. (2014). Young girls’ spatial and arithmetic performance: The mediating role of maternal supportive interactions during joint spatial problem solving. Early Childhood Research Quarterly, 29(4), 636–648. doi:10.1016/j.ecresq.2014.07.005
  • Chabani, E., & Hommel, B. (2014). Effectiveness of visual and verbal prompts in training visuospatial processing skills in school age children. Instructional Science, 42, 995–1012. doi:10.1007/s11251-014-9316-7
  • Chard, D. J., Baker, S. K., Clarke, B., Jungjohann, K., & Davis, K. (2008). Preventing early mathematics difficulties: The feasibility of a rigorous kindergarten mathematics curriculum. Learning Disability Quarterly, 31(1), 11–21. doi:10.2307/30035522
  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15, 2–11. doi:10.1080/15248372.2012.725186
  • Chu, F. W., VanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. doi:10.1016/j.jecp.2015.01.006
  • Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108(4), 713–733. doi:10.1016/j.jecp.2010.11.004
  • Cirino, P. T., Tolar, T. D., Fuchs, L. S., & Huston-Warren, E. (2016). Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 145, 95–119. doi:10.1016/j.jecp.2015.12.010
  • Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133–148. doi:10.1007/s10857-011-9173-0
  • Clements, D. H., Swaminathan, S., Hannibal, M. A. Z., & Sarama, J. (1999). Young children’s concepts of shape. Journal for Research in Mathematics Education, 30(2), 192–212. doi:10.2307/749610
  • Crollen, V., & Noël, M.-P. (2015). Spatial and numerical processing in children with high and low visuospatial abilities. Journal of Experimental Child Psychology, 132, 84–98. doi:10.1016/j.jecp.2014.12.006
  • Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24(2), 444–451. doi:10.1093/cercor/bhs321
  • Dearing, E., Casey, B. M., Ganley, C. M., Tillinger, M., Laski, E., & Montecillo, C. (2012). Young girls’ arithmetic and spatial skills: The distal and proximal roles of family socioeconomics and home learning experiences. Early Childhood Research Quarterly, 27(3), 458–470. doi:10.1016/j.ecresq.2012.01.002
  • Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21. doi:10.1016/j.intell.2006.02.001
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology. General, 122(3), 371–396.
  • de Hevia, M. D., & Spelke, E. S. (2009). Spontaneous mapping of number and space in adults and young children. Cognition, 110(2), 198–207. doi:10.1016/j.cognition.2008.11.003
  • EMACS. (2012). Pisa 2012. Nationaler bericht Luxemburg. [Pisa 2012. National Report Luxembourg]. Luxembourg City, Luxembourg.
  • Friso-van den Bos, I., Kroesbergen, E. H., & Van Luit, J. E. H. (2014). Number sense in kindergarten children: Factor structure and working memory predictors. Learning and Individual Differences, 33, 23–29. doi:10.1016/j.lindif.2014.05.003
  • Frostig, M. (1973). Test de développement de la perception visuelle. [Developmental test of visual perception.] Paris, France: Les Editions du Centre de Psychologie Appliquée.
  • Frostig, M., Lefever, D. W., & Whittlesey, J. R. B. (1961). A developmental test of visual perception for evaluating normal and neurologically handicapped children. Perceptual and Motor Skills, 12(3), 383–394. doi:10.2466/pms.1961.12.3.383
  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46(6), 1731–1746. doi:10.1037/a0020662
  • Ganzeboom, H. B. G., & Treiman, D. J. (1996). Internationally comparable measures of occupational status for the 1988 international standard classification of occupations. Social Science Research, 239(25), 201–239. doi:10.1006/ssre.1996.0010
  • Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177–194. doi:10.1348/000709900158047
  • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. doi:10.1037/a0025510
  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359. doi:10.1111/j.1467-8624.2007.01069.x
  • Göbel, S. M., Calabria, M., Farnè, A., & Rossetti, Y. (2006). Parietal rTMS distorts the mental number line: Simulating “spatial” neglect in healthy subjects. Neuropsychologia, 44(6), 860–868. doi:10.1016/j.neuropsychologia.2005.09.007
  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line/: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565. doi:10.1177/0022022111406251
  • Goffaux, V., Martin, R., Dormal, G., Goebel, R., & Schiltz, C. (2012). Attentional shifts induced by uninformative number symbols modulate neural activity in human occipital cortex. Neuropsychologia, 50(14), 3419–3428. doi:10.1016/j.neuropsychologia.2012.09.046
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1241.doi:10.1037/a0028593
  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. doi:10.1038/nature07246
  • Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance/: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68. doi:10.1016/j.tine.2015.05.001
  • Hoffmann, D., Hornung, C., Martin, R., & Schiltz, C. (2013). Developing number-space associations: SNARC effects using a color discrimination task in 5-year-olds. Journal of Experimental Child Psychology, 116(4), 775–791. doi:10.1016/j.jecp.2013.07.013
  • Hoffmann, D., Mussolin, C., Martin, R., & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS ONE, 9(1), e85048.doi:10.1371/journal.pone.0085048
  • Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 1–18. doi:10.3389/fpsyg.2014.00272
  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews. Neuroscience, 6(6), 435–448. doi:10.1038/nrn1684
  • Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107. doi:10.1016/j.cognition.2013.12.007
  • Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145(1), 147–155. doi:10.1016/j.actpsy.2013.11.009
  • Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills: Evidence from a large, representative U.S. sample. Psychological Science, 26, 302–310. doi:10.1177/0956797614563338
  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. doi:10.1037/a0014939
  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. (2008). Transfer of mathematical knowledge: The portability of genetic instantiations. Child Development Perspectives, 3(3), 151–155. doi:10.1111/j.1750-8606.2009.00096.x
  • Kaufman, A., & Kaufman, N. (1993). Kaufmann Assessment Battery for Children. Paris, France: Les Editions du Centre de Psychologie Appliquée.
  • Kaufmann, L., Handl, P., & Thöny, B. (2003). Evaluation of a numeracy intervention program on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36(6), 564–573. doi:10.1177/00222194030360060701
  • Klein, A., Starkey, P., Clements, D., Sarama, J., & Iyer, R. (2008). Effects of a pre-kindergarten mathematics intervention: A randomized experiment. Journal of Research on Educational Effectiveness, 1(3), 155–178. doi:10.1080/19345740802114533
  • Krajewski, K., Renner, A., Nieding, G., & Schneider, W. (2009). Frühe Förderung von mathematischen Kompetenzen im Vorschulalter. [Early promotion of mathematical competencies in the preschool years.] Zeitschrift Für Erziehungswissenschaft, 10, 91–103. Retrieved from http://link.springer.com/chapter/10.1007/978-3-531-91452-7_7
  • Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526. doi:10.1016/j.learninstruc.2008.10.002
  • Lachance, J. A., & Mazzocco, M. M. (2006). A longitudinal analysis of sex differences in math and spatial skills in primary school age children. Learning and Individual Differences, 16(3), 195–216. doi:10.1016/j.lindif.2005.12.001
  • Laski, E. V., Jor’dan, J. R., Daoust, C., & Murray, A. K. (2015). What makes mathematics manipulatives effective? Lessons from cognitive science and Montessori education. SAGE Open, 5(2), 1–6. doi:10.1177/2158244015589588
  • Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50(3), 853–64. doi:10.1037/a0034321
  • LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. doi:10.1111/j.1467-8624.2010.01508.x
  • Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940–949. doi:10.1037/0012-1649.35.4.940
  • Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: A predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48(2), 530–542. doi:10.1037/a0025913
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. doi:10.2307/1130467
  • Mammarella, I. C. ., Bomba, M., Caviola, S., Broggi, F., Neri, F., Lucangeli, D., & Nacinovich, R. (2013). Mathematical difficulties in nonverbal learning disability or co-morbid dyscalculia and dyslexia. Developmental Neuropsychology, 38(6), 418–432. doi:10.1080/87565641.2013.817583
  • Manches, A., & O’Malley, C. (2016). The effects of physical manipulatives on children’s numerical strategies. Cognition and Instruction, 34(1), 27–50. doi:10.1080/07370008.2015.1124882
  • Manches, A., O’Malley, C., & Benford, S. (2010). The role of physical representations in solving number problems: A comparison of young children’s use of physical and virtual materials. Computers and Education, 54(3), 622–640. doi:10.1016/j.compedu.2009.09.023
  • Martin, R. B., Cirino, P. T., Sharp, C., & Barnes, M. (2014). Number and counting skills in kindergarten as predictors of grade 1 mathematical skills. Learning and Individual Differences, 34, 12–23. doi:10.1016/j.lindif.2014.05.006
  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6(9), e23749. doi:10.1371/journal.pone.0023749
  • Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53(1), 218–253. doi:10.1007/s11881-003-0011-7
  • Melhuish, E., Phan, M., Sylva, K., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2008). Effects of the home learning environment and preschool center experience upon literacy and numeracy development in early primary school. Journal of Social Issues, 64(1), 95–114. doi:10.1111/j.1540-4560.2008.00550.x
  • Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math. Developmental and educational implications. In J. B. Benson (Ed.), Advances in child development and behavior (Vol. 42). Burlington, VT: Elsevier.
  • Mix, K. S., Levine, S., Cheng, Y.-L., Young, C., Hambrick, D., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227. doi:10.1037/xge0000182
  • Moyer, S. P., Bolyard, J., & Spikell, M. (2002). What are virtual manipulatives. Teaching Children Mathematics, 8(6), 372–377. Retrieved from http://courses.edtechleaders.org/documents/elemmath/manipulatives.pdf
  • Nuerk, H. C., Wood, G., & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187–194. doi:10.1027/1618-3169.52.3.187
  • Papic, M. M. (2007). Promoting repeating patterns with young children–more than just alternating colours! Australian Primary Mathematics Classroom, 12(3), 8–13.
  • Papic, M. M., & Mulligan, J. (2007). Mathematical patterning in early childhood: An intervention study. Mathematics: Essential Research, Essential Practice, 2, 591–600. Retrieved from http://oatd.org/oatd/record?record=“handle:1959.14/215381”
  • Patro, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2015). How to rapidly construct a spatial-numerical representation in preliterate children (at least temporarily). Developmental Science, 19, 126–144. doi:10.1111/desc.12296
  • Patro, K., & Haman, M. (2012). The spatial-numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111(3), 534–542. doi:10.1016/j.jecp.2011.09.006
  • Patro, K., Nuerk, H. C., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology, 5, 1–6. doi:10.3389/fpsyg.2014.00419
  • Pieters, S., Desoete, A., Roeyers, H., Vanderswalmen, R., & Van Waelvelde, H. (2012). Behind mathematical learning disabilities: What about visual perception and motor skills? Learning and Individual Differences, 22(4), 498–504. doi:10.1016/j.lindif.2012.03.014
  • Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32(3), 146–159. doi:10.1016/j.appdev.2011.02.005
  • Ramani, G. B., & Siegler, R. S. (2015). How informal learning activities can promote children’s numerical knowledge. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1135–1153). Oxford, UK: Oxford University Press.
  • Ramey, C. T., & Ramey, S. L. (1998). Early intervention and early experience. American Psychologist, 53(2), 109–120. doi:10.1037//0003-066x.53.2.109
  • Ramey, C. T., & Ramey, S. L. (2004). Early learning and school readiness: Can early intervention make a difference? Merrill-Palmer Quarterly, 50(4), 471–491. doi:10.1353/mpq.2004.0034
  • Ranzini, M., Dehaene, S., Piazza, M., & Hubbard, E. M. (2009). Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 47(12), 2615–2624. doi:10.1016/j.neuropsychologia.2009.05.011
  • Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24(4), 450–472. doi:10.1016/j.cogdev.2009.09.003
  • Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91(2), 137–157. doi:10.1016/j.jecp.2005.01.004
  • Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24(7), 1301–1308. doi:10.1177/0956797612466268
  • Salillas, E., & Carreiras, M. (2014). Core number representations are shaped by language. Cortex, 52(1), 1–11. doi:10.1016/j.cortex.2013.12.009
  • Schacter, J., Shih, J., Allen, C. M., DeVaul, L., Adkins, A. B., Ito, T., & Jo, B. (2016). Math shelf: A randomized trial of a prekindergarten tablet number sense curriculum. Early Education and Development, 27(1), 74–88. doi:10.1080/10409289.2015.1057462
  • Schuller, A.-M., Hoffmann, D., Goffaux, V., & Schiltz, C. (2014). Shifts of spatial attention cued by irrelevant numbers: Electrophysiological evidence from a target discrimination task. Journal of Cognitive Psychology, 5911, 1–17. doi:10.1080/20445911.2014.946419
  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. doi:10.1111/j.1467-8624.2004.00684.x
  • Sortor, J. M., & Kulp, M. T. (2003). Are the results of the Beery-Buktenica developmental test of visual-motor integration and its subtests related to achievement test scores? Optometry and Vision Science/: Official Publication of the American Academy of Optometry, 80(11), 758–763. doi:10.1097/00006324-200311000-00013
  • Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99–120. doi:10.1016/j.ecresq.2004.01.002
  • Tewes, U., Rossmann, P., & Schallberger, U. (1999). Hamburg-Wechsler-Intelligenztest für Kinder III. [Hamburg-Wechsler-Intelligencetest for children III.] Bern, Switzerland: Huber.
  • Tzuriel, D., & Egozi, G. (2010). Gender differences in spatial ability of young children: The effects of training and processing strategies. Child Development, 81(5), 1417–1430. doi:10.1111/j.1467-8624.2010.01482.x
  • Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education. When, why, and how? In B. H. Ross (Ed.), Psychology of learning and motivation - Advances in research and theory (Vol. 57, pp. 147–181). San Diego, CA: Elsevier.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2012). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi:10.1037/a0028446
  • Van Der Ven, S. H. G., Van Der Maas, H. L. J., Straatemeier, M., & Jansen, B. R. J. (2013). Visuospatial working memory and mathematical ability at different ages throughout primary school. Learning and Individual Differences, 27, 182–192. doi:10.1016/j.lindif.2013.09.003
  • van Nieuwenhoven, C., Grégoire, J., & Noël, M.-P. (2001). Tedi-Math: Test diagnostique des compétences de base en mathématiques. [Diagnositc test of basic math competencies.] Antwerpen, Belgium: Harcourt.
  • Venneri, A., Cornoldi, C., & Garuti, M. (2003). Arithmetic difficulties in children with visuospatial learning disability (VLD). Child Neuropsychology, 9(3), 175–183. doi:10.1076/chin.9.3.175.16454
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2014). Finding the missing piece: Blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7–13. doi:10.1016/j.tine.2014.02.005
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062–1076. doi:10.1111/cdev.12165
  • Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51. doi:10.1016/j.jecp.2014.02.012
  • Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873. doi:10.1111/j.1469-8749.2007.00868.x
  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. doi:10.1037/0033-2909.117.2.250
  • Wechsler, D. (2004). Echelle d’intelligence de Wechsler pour la période pré-scolaire et primaire - troisième édition [Wechsler Preschool and Primary Scale of Intelligence - 3rd Edition]. Paris, France: Les Editions du Centre de Psychologie Appliquée.
  • Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3(4), 224–234. doi:10.1111/j.1751-228X.2009.01075.x
  • Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763–771. doi:10.3758/PBR.15.4.763
  • Zhang, X., & Lin, D. (2015). Pathways to arithmetic: The role of visual-spatial and language skills in written arithmetic, arithmetic word problems, and nonsymbolic arithmetic. Contemporary Educational Psychology, 41, 188–197. doi:10.1016/j.cedpsych.2015.01.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.