215
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Transport and Partitioning of Lead in Indian Mustard (Brassica juncea) and Wheat (Triticum aestivum)

, , &
Pages 345-355 | Published online: 30 Sep 2014

REFERENCES

  • Agency for Toxic Substances and Disease Registry. 2007. Toxicological profile for lead. Atlanta GA: US Department of Health and Human Services, Public Health Service.
  • Ahmad, M. S. A., M. Ashraf, Q. Tabassam, M. Hussain, and H. Firdous. 2011. Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol. Trace Elem. Res. 144:1229–1239.
  • An, Y. J., Kim, Y. M., Kwon, T. I., and Jeong, S. W. 2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326:85–93.
  • Andra, S. S., Datta, R., Sarkar, D., Makris, K. C., Mullens, C. P., Sahi, S. V., and Bach, S. B. H. 2009. Induction of lead-binding phytochelatins in vetiver grass Vetiveria zizanioides (L.). J. Environ. Qual. 38:868–877.
  • Angelova, V., Ivanova, R., and Ivanov, K. 2004. Heavy metal accumulation and distribution in oil crops. Commun. Soil Sci. Plant Anal. 35:2551–2566.
  • Ashraf, M.Y., Azhar, N., Ashraf, M., Hussain, M., and Arshad, M. 2011. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. J. Environ. Biol. 32:659–666.
  • Baralkiewicz, D., Kozka, M., Piechalak, A., Tomaszewska, B., and Sobczak, P. 2009. Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC-ICP-MS and HPLC-ESI-MSn. Talanta 79:493–498.
  • Begonia, G. B., Davis, C. D., Begonia, M. F. T., and Gray, C. N. 1998. Growth responses of Indian mustard Brassica juncea (L.) Czern., and its phytoextraction of lead from a contaminated soil. Bull. Environ. Contam. Toxicol. 61:38–43.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., and Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860–865.
  • Cakmak, I., Welch, R. M., Hart, J., Norvell, W. A., Ozturk, L., and Kochian, L. V. 2000. Uptake and retranslocation of leaf-applied cadmium (Cd-109) in diploid, tetraploid and hexaploid wheats. J. Exp. Bot. 51:221–226.
  • Chen, A., Komives, E. A., and Schroeder, J. I. 2006. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol. 141:108–120.
  • Cobbett, C. S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123:825–832.
  • Codex Alimentarius Commission. 2001. Lead: Maximum levels. Volume 1, Codex Stan 230.
  • Dey, S., Dey, J., Patra, S., and Pothal, D. 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz. J. Plant Physiol. 19:53–60.
  • Ebbs, S. D., and Kochian, L. V. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32:802–806.
  • Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., and Kochian, L. V. 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual. 26:1424–1430.
  • Estrella-Gomez, N., Mendoza-Cozatl, D., Moreno-Sanchez, R., Gonzalez-Mendoza, D., Zapata-Perez, O., Martinez-Hernandez, A., and Santamaria, J.M. 2009. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aqua. Toxicol. 91:320–328.
  • Firoz, M., Tauheed, K., and Afridi, R. M. 2005. Fertilizer application strategies for improved yield and fatty acid composition of oil in mustard. Indian J Plant Physiol. 10:327–332.
  • Gong, J. M., Lee, D. A., and Schroeder, J. I. 2003. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 100:10118–10123.
  • Gopal, R., and Rizvi, A. H. 2008. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544.
  • Gupta, D. K., Nicoloso, F. T., Schetinger, M. R. C., Rossato, L. V., Pereira, L. B., Castro, G. Y., Srivastava, S., and Tripathi, R. D. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 172:479–484.
  • Hao, X. Z., Zhou, D. M., Wang, Y. K., Shi, F. G., and Jiang, P. 2011. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils. Int. J. Phytoremediat. 13:289–301.
  • Harris, N. S., and Taylor, G. J. 2001. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation. J. Exp. Bot. 52:1473–1481.
  • Herren, T., and Feller, U. 1997. Transport of cadmium via xylem and phloem in maturing wheat shoots: Comparison with the translocation of zinc, strontium and rubidium. Ann. Bot. 80:623–628.
  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., and Daniels, R. B. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J. Environ. Qual. 22:335–348.
  • Huang, J. W., and Cunningham, S. D. 1996. Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol. 134:75–84.
  • Iqbal, M. C. M., Weerakoon, S. R., and Peiris, P. K. D. 2006. Variability of fatty acid composition in interspecific hybrids of mustard Brassica juncea and Brassica napus. Ceylon J. Sci. 35:17–23.
  • Jiang, W., Struik, P. C., Lingna, J., van Keulen, H., Ming, Z., and Stomph, T. J. 2007. Uptake and distribution of root-applied or foliar-applied Zn-65 after flowering in aerobic rice. Ann. Appl. Biol. 150:383–391.
  • Kabata-Pendias, A. 2001. Trace elements in soils and plants. Boca Raton, FL: CRC Press.
  • Kato, M., Ishikawa, S., Inagaki, K., Chiba, K., Hayashi, H., Yanagisawa, S., and Yoneyama, T. 2010. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci. Plant Nutr. 56:839–847.
  • Khodaverdiloo, H., Dashtaki, S. G., and Rezapour, S. 2011. Lead and cadmium accumulation potential and toxicity threshold determined for land cress and spinach. Int. J. Plant Prod. 5:275–281.
  • Kumar, P., Dushenkov, V., Motto, H., and Raskin, I. 1995. Phytoextraction—The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29:1232–1238.
  • Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., and Sayah, F. 2011. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C. R. Biol. 334:118–126.
  • Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E. A., Kehr, J., and Schroeder, J. I. 2008. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 54:249–259.
  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., and Gupta, D. K. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039.
  • National Academy of Sciences. 2001. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press.
  • Sankaran, R. P., and Ebbs, S. D. 2008. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol. Plant. 132:69–78.
  • Seregin, I. V., Shpigun, L. K., and Ivanov, V. B. 2004. Distribution and toxic effects of cadmium and lead on maize roots. Russ. J. Plant Physiol. 51:525–533.
  • Seth, C. S., Misra, V., Singh, R. R., and Zolla, L. 2011. EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil. 347:231–242.
  • Sharma, P., and Dubey, R. S. 2005. Lead toxicity in plants. Braz. J. Plant Physiol. 17:35–52.
  • Wang, Z. W., Nan, Z. R., Wang, S. L., and Zhao, Z. J. 2011. Accumulation and distribution of cadmium and lead in wheat (Triticum aestivum L.) grown in contaminated soils from the oasis, north-west China. J. Sci. Food Agric. 91:377–384.
  • Waters, B. M., and Grusak, M. A. 2008. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol. 177:389–405.
  • Waters, B. M., Uauy, C., Dubcovsky, J., and Grusak, M. A. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 60:4263–4274.
  • World Health Organization. 1996. Trace elements in human nutrition and health. Geneva: World Health Organization.
  • Wu, C. Y., Lu, L. L., Yang, X. E., Feng, Y., Wei, Y. Y., Hao, H. L., Stoffella, P. J., and He, Z. L. 2010. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J. Agric. Food Chem. 58:6767–6773.
  • Wu, F. B., and Zhang, G. P. 2002. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J. Plant Nutr. 25:1163–1173.
  • Yang, X. E., Chao, Y. E., Ye, H. B., He, Z. L., and Stoffella, P. J. 2010. Zinc and lead accumulation by two contrasting ecotypes of Sedum alfredii Hance at different zinc/lead complex levels. Commun. Soil Sci. Plant Anal. 41:516–525.
  • Zaier, H., Mudarra, A., Kutscher, D., de la Campa, M. R., Abdelly, C., and Sanz-Medel, A. 2010. Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry. Anal. Chim. Acta 671:48–54.
  • Zeng, F. R., Mao, Y., Cheng, W. D., Wu, F. B., and Zhang, G. P. 2008. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ. Pollut. 153:309–314.
  • Zhang, G. P., Fukami, M., and Sekimoto, H. 2002. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res. 77:93–98.
  • Zhang, Z. C., Gao, X., and Qiu, B. S. 2008. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911–918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.