157
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Arbuscular Mycorrhizal Fungi and Arsenate Uptake by Brachiaria Grass (Brachiaria decumbens)

, , &
Pages 151-159 | Published online: 29 May 2015

REFERENCES

  • Ahmed, F. R. S., K. Killham, and I. Alexander. 2006. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283:33–41. doi: 10.1007/s11104-005-0415-8.
  • Al Agely, A., D. M. Sylvia, and L. Q. Ma. 2005. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). Agricultural Experiment Station Journal Series No. R-10503. J. Environ. Qual. 34:2181–2186.
  • Asher, C. J., and P. F. Reay. 1979. Arsenic uptake by barley seedlings. Funct. Plant Biol. 6:459–466.
  • Bieleski, R. L., and A. Lauchli. 1992. Phosphate uptake, efflux and deficiency in the water fern, Azolla. Plant Cell Environ. 15:665–673. doi: 10.1111/j.1365-3040.1992.tb01008.x.
  • Burló, F., I. Guijarro, A. A. Carbonell-Barrachina, D. Valero, and F. Martínez-Sánchez. 1999. Arsenic species: Effects on and accumulation by tomato plants. J. Agric. Food Chem. 47:1247–1253. doi: 10.1021/jf9806560.
  • Carbonell, A. A., M. A. Aarabi, R. D. DeLaune, R. P. Gambrell, and W. H. Patrick Jr. 1998. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total Environ. 217:189–199. doi: 10.1016/S0048-9697(98)00195-8.
  • Chen, B., X. Xiao, Y. G. Zhu, F. A. Smith, Z. M. Xie, and S. E. Smith. 2007. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci. Total Environ. 379:226–234. doi: 10.1016/j.scitotenv.2006.07.038.
  • Christophersen, H. M., F. A. Smith, and S. E. Smith. 2009. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytologist 184:962–974. doi: 10.1111/j.1469-8137.2009.03009.x.
  • Clark, G. T., J. Dunlop, and H. T. Phung. 2000. Phosphate absorption by Arabidopsis thaliana: Interactions between phosphorus status and inhibition by arsenate. Funct. Plant Biol. 27:959–965.
  • CONAMA. 2009. Valores Orientadores de Qualidade Do Solo Quanto a Apresentação de Substâncias Químicas, Conselho Nacional de Meio Ambiente. Brazil. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620 (accessed April 12, 2012).
  • Dermatas, D., D. H. Moon, N. Menounou, X. Meng, and R. Hires. 2004. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. J. Hazard. Mater. 116:25–38. doi: 10.1016/j.jhazmat.2004.04.023.
  • Fitz, W. J., and W. W. Wenzel. 2002. Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259–278. doi: 10.1016/S0168-1656(02)00218-3.
  • Fowler, B. A. 1977. Toxicology of environmental arsenic. In Toxicology of trace elements, ed. R. A. Goyer and M. A. Mehlan, 79–122. New York: Taylor & Francis.
  • Gerdemann, J. W., and T. H. Nicolson. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46:235–244. doi: 10.1016/S0007-1536(63)80079-0.
  • Giovannetti, M., and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x.
  • Gomes, M. P., M. Carvalho, G. S. Carvalho, Q. S. Garcia, L. R. G. Guilherme, and A. M. Soares. 2013. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress. Int.l J. Phytoremediat. 15:633–646.
  • Gomes, M. P., M. L. Andrade, C. C. Nascentes, and M. R. Scotti. 2014. Arsenic root sequestration by a tropical woody legume as affected by arbuscular mycorrhizal fungi and organic matter: Implications for land reclamation. Water Air Soil Pollut. 225:1919. doi: 10.1007/s11270-014-1919-8.
  • Grace, E. J., O. Cotsaftis, M. Tester, F. A. Smith, and S. E. Smith. 2009. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist 181:938–949. doi: 10.1111/j.1469-8137.2008.02720.x.
  • Gunes, A., D. J. Pilbeam, and A. Inal. 2009. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220. doi: 10.1007/s11104-008-9719-9.
  • Harrison, M. J., G. R. Dewbre, and J. Y. Liu. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429.
  • Harrison, M. J., and M. L. van Buuren. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629.
  • Hudson-Edwards, K. A., S. L. Houghton, and A. Osborn. 2004. Extraction and analysis of arsenic in soils and sediments. Trends Anal. Chem. 23:745–752. doi: 10.1016/j.trac.2004.07.010.
  • Jankong, P., P. Visoottiviseth, and S. Khokiattiwong. 2007. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906–1912. doi: 10.1016/j.chemosphere.2007.02.061.
  • Johnson, N. C., J.-H. Graham, and F. A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135:575–585. doi: 10.1046/j.1469-8137.1997.00729.x.
  • Knudson, J. A., T. Meikle, and T. H. DeLuca. 2003. Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of Basin wildrye. J. Environ. Qual. 32:2001–2006.
  • Maldonado-Mendoza, I. E., G. R. Dewbre, M. van Buuren, W. Versaw, and M. J. Harrison. 2002. Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67–74. doi: 10.1007/s00572-001-0149-2.
  • Mandal, B. K., and K. T. Suzuki. 2002. Arsenic round the world: A review. Talanta 58:201–235. doi: 10.1016/S0039-9140(02)00268-0.
  • Meharg, A. A. 1994. Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ. 17:989–993. doi: 10.1111/j.1365-3040.1994.tb02032.x.
  • Meharg, A. A. 2004. Arsenic in rice—Understanding a new disaster for South-East Asia. Trends Plant Sci. 9:415–417. doi: 10.1016/j.tplants.2004.07.002.
  • Meharg, A. A., and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154:29–43. doi: 10.1046/j.1469-8137.2002.00363.x.
  • Meharg, A. A., and M. R. Macnair. 1991. Uptake, Accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytologist 117:225–231. doi: 10.1111/j.1469-8137.1991.tb04903.x.
  • Mihucz, V. G., E. Tatár, I. Virág, E. Cseh, F. Fodor, and G. Záray. 2005. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Anal. Bioanal. Chem. 383:461–466. doi: 10.1007/s00216-005-3325-y.
  • Ng, J. C., J. Wang, and A. Shraim. 2003. A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359. doi: 10.1016/S0045-6535(03)00470-3.
  • Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasidic and vesicular-arbuscular mycorrhizal fungi for rapid assessement for infection. Trans. Br. Mycol. Soc. 55:158–161.
  • Rausch, C., P. Daram, S. Brunner, J. Jansa, M. Lalol, G. Leggewie, N. Amrhein, and M. Bucher. 2001. A phosphate transporter expressed in arbuscule containing cells in potato. Nature 414:462–466.
  • Sarruge, J. R., and H. P. Haag. 1974. Plant chemical analysis. Piracicaba: Taylor & Francis.
  • Shin, H., H. S. Shin, G. R. Dewbre, and M. J. Harrison. 2004. Phosphate transport in arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39:629–642. doi: 10.1111/j.1365-313X.2004.02161.x.
  • Smith, F. W., S. R. Mudge, A. L. Rae, and D. Glassop. 2003. Phosphate transport in plants. Plant Soil 248:71–83. doi: 10.1023/A:1022376332180.
  • Smith, S. E., H. M. Christophersen, S. Pope, and F. A. Smith. 2010. Arsenic uptake and toxicity in plants: Integrating mycorrhizal influences. Plant Soil 327:1–21. doi: 10.1007/s11104-009-0089-8.
  • Trotta, A., P. Falaschi, L. Cornara, V. Minganti, A. Fusconi, G. Drava, and G. Berta. 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the as hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81. doi: 10.1016/j.chemosphere.2006.02.048.
  • Tu, C., and L. Q. Ma. 2002. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 31:641–647.
  • Ultra, V. U. Jr., S. Tanaka, K. Sakurai, and K. Iwasaki. 2007. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41. doi: 10.1007/s11104-006-9087-2.
  • Walker, C., W. Mize, and H. S. McNabb. 1982. Populations of endogonaceous fungi at two locations in central Iowa. Can. J. Bot. 60:2518–2529.
  • Wang, P., C. H. Kong, F. Hu, and X. H. Xu. 2007. Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant Soil 296:43–51. doi: 10.1007/s11104-007-9288-3.
  • Xu, H., K. Li, F. Yang, Q. Shi, and X. Wang. 2010. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol. Biol. Rep. 37:3157–3163. doi: 10.1007/s11033-009-9895-6.
  • Xu, X. Y., S. P. McGrath, and F. J. Zhao. 2007. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist 176:590–599. doi: 10.1111/j.1469-8137.2007.02195.x.
  • Yun-sheng, X., B. D. Chen, P. Christie, A. F. Smith, Y. S. Wang, and X. L. Li. 2007. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J. Environ. Sci. 19:1245–1251. doi: 10.1016/S1001-0742(07)60203-4.
  • Zhang, X. H., A. J. Lin, Y. L. Gao, R. J. Reid, M. H. Wong, and Y. G. Zhu. 2009. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol. Biochem. 41:930–935. doi: 10.1016/j.soilbio.2008.08.011.
  • Zhao, F. J., J. F. Ma, A. A. Meharg, and S. P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytologist 181:777–794. doi: 10.1111/j.1469-8137.2008.02716.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.