209
Views
12
CrossRef citations to date
0
Altmetric
Articles

The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna

, &
Pages 38-53 | Published online: 01 Feb 2016

References

  • Adekunle, I. M. 2011. Bioremediation of Soils Contaminated with Nigerian petroleum products using composted municipal wastes. Bioremediat. J. 15:230–241.
  • Adesodun, J. K., D. A. Davidson, and J. S. C. Mbagwu. 2008. Soil faunal activity of an oil-polluted tropical alfisol amended with organic wastes as determined by micromorphological observations. Appl. Soil Ecol. 39:46–57.
  • Antoniolli, Z. I., M. Redin, E. L. de Souza, and E. Pocojeski. 2013. Heavy metal, pesticides and fuels: Effect in the population of collembola in the soil. Cienc. Rural 43:992–998.
  • Armstrong, G., and R. G. McKinlay. 1997. Vegetation management in organic cabbages and pitfall catches of carabid beetles. Agric. Ecosyst. Environ. 64:267–276.
  • Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96:1049–1055.
  • Bitton, G., Y. Henis, and N. Lahav. 1976. Influence of clay minerals, humic acid and bacterial capsular polysaccharide on the survival of Klebsiella aerogenes exposed to drying and heating in soils. Plant Soil 45:65–74.
  • Cébron, A., J. Cortet, S. Criquet, A. Biaz, V. Calvert, C. Caupert, C. Pernin, and C. Leyval. 2011. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators Res. Microbiol. 162:896–907.
  • Clarke, P. J., and T. J. Ward. 1994. The response of southern hemisphere saltmarsh plants and gastropods to experimental contamination by petroleum hydrocarbons. J. Exp. Mar. Bio. Ecol. 175:43–57.
  • Couceiro, S. R. M., N. Hamada, R. L. M. Ferreira, B. R. Forsberg, and J. O. da Silva. 2007. Domestic sewage and oil spills in streams: Effects on edaphic invertebrates in flooded forest, Manaus, Amazonas, Brazil. Water Air Soil Pollut. 180:249–259.
  • Dandurand, L. M., M. J. Morra, M. H. Chaverra, and C. S. Orser. 1994. Survival of Pseudomonas spp in air-dried mineral powders. Soil Biol. Biochem. 26:1423–1430.
  • Das, K., and A. K. Mukherjee. 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosastrains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 98:1339–1345.
  • Dorn, P. B., and J. P. Salanitro. 2000. Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40:419–426.
  • Duke, N. C., K. A. Burns, R. P. J. Swannell, O. Dalhaus, and R. J. Rupp. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: The Gladstone field trials. Mar. Pollut. Bull. 41:403–412.
  • Efroymson, R. A., B. E. Sample, and M. J. Peterson. 2004. Ecotoxicity test data for total petroleum hydrocarbons in soil: Plants and soil-dwelling invertebrates. Hum. Ecol. Risk Assess. 10:207–231.
  • Eom, I. C., C. Rast, A. M. Veber, and P. Vasseur. 2007. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol. Environ. Saf. 67:190–205.
  • Eyre, M. D., D. Labanowska-Bury, J. G. Avayanos, R. White, and C. Leifert. 2009. Ground beetles (Coleoptera, Carabidae) in an intensively managed vegetable crop landscape in eastern England. Agric. Ecosyst. Environ. 131:340–346.
  • Feder, H. M., and A. Blanchard. 1998. The deep benthos of Prince William sound, Alaska, 16 months after the Exxon Valdez oil spill. Mar. Pollut. Bull. 36:118–130.
  • Geissen, V., P. Gomez-Rivera, E. Huerta Lwanga, R. Bello Mendoza, A. Trujillo Narcias, and E. Barba Marcias. 2008. Using earthworms to test the efficiency of remediation of oil-polluted soil in tropical Mexico. Ecotoxicol. Environ. Saf. 71:638–642.
  • Ghazali, F. M., Rnza Rahman, A. B. Salleh, and M. Basri. 2004. Biodegradation of hydrocarbons in soil by microbial consortium. Int. Biodeterior. Biodegrad. 54:61–67.
  • Gospodarek, J. 2008. Effect of oil derivative spill on epigeal mezofauna. Proc. Ecopole 2:309–314.
  • Haritash, A. K., and C. P. Kaushik. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169:1–15.
  • Hartel, P. G., and M. Alexander. 1986. Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci. Soc. Am. J. 50:1193–1198.
  • Heijnen, C. E., S. L. Burgers, and J. A. van Veen. 1993. Metabolic activity and population dynamics of rhizobia introduced into unamended and bentonite-amended loamy sand. Appl. Environ. Microbiol. 59:743–747.
  • Hong, Q., Z. Zhang, Y. Hong, and S. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeterior. Biodegrad. 59:55–61.
  • Huysman, F., and W. Verstraete. 1993. Water-facilitated transport of bacteria in unsaturated soil columns: Influence of inoculation and irrigation methods. Soil Biol. Biochem. 25:91–97.
  • Hyun, S., M. Y. Ahn, A. R. Zimmerman, M. Kim, and J. G. Kim. 2008. Implication of hydraulic properties of bioremediated diesel-contaminated soil. Chemosphere 71:1646–1653.
  • Jacques, R. J. S., B. C. Okeke, F. M. Bento, A. S. Teixeira, M. C. R. Peralba, and F. A. O. Comargo. 2008. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour. Technol. 99:2637–2643.
  • Kaszycki, P., M. Pawlik, P. Petryszak, and H. Kołoczek. 2010. Aerobic process for in situ bioremediation of petroleum-derived contamination of soil: A field study based on laboratory microcosm tests. Ecol. Chem. Eng. A 17:405–414.
  • Kaszycki, P., M. Pawlik, P. Petryszak, and H. Kołoczek. 2011. Ex situ bioremediation of soil polluted with oily waste: The use of specialized microbial consortia for process bioaugmentation. Ecol. Chem. Eng. S 18:83–92.
  • Kaszycki, P., P. Petryszak, and H. Kołoczek. 2008. Biological treatment of wastewaters generated by furniture industry part 2. Construction of a specialized activated sludge and optimization of bioprocess parameters in semi-technical scale tests. Ecol. Chem. Eng. A 15:1257–1271.
  • Kaszycki, P., P. Supel, and P. Petryszak. 2014. Bacterial population dynamics of biostimulated auto- and allochthonous microflora in waste oily emulsions from the metal-processing industry. J. Ecol. Eng. 15:14–22.
  • Kauppi, S., A. Sinkkonen, and M. Romantschuk. 2011. Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: Comparison of biostimulation and bioaugmentation. Int. Biodeterior. Biodegrad. 65:359–368.
  • Kim, J. M., N. T. Le, B. S. Chung, J. H. Park, J. W. Bae, E. L. Madsen, and C. O. Jeon. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74:7313–7320.
  • Komukai-Nakamura, S., K. Sugiura, Y. Yamauchi-Inomata, H. Toki, K. Venkateswaran, S. Yamamoto, H. Tanaka, and S. Harayama. 1996. Construction of bacterial consortia that degrade Arabian light crude oil. J. Ferment. Bioeng. 82:570–574.
  • Lytle, D. A., and B. L. Peckarsky. 2001. Spatial and temporal impacts of a diesel fuel spill on stream invertebrates. Freshwater Biol. 46:693–704.
  • Lu, L., and R. S. S. Wu. 2006. A field experimental study on recolonization and succession of macrobenthic infauna in defaunated sediment contaminated with petroleum hydrocarbons. Estuar. Coast. Shelf Sci. 68:627–634.
  • Maliszewska-Kordybach, B., and B. Smreczak. 2000. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs)—Effect on plants. Environ. Technol. 21:1099–1110.
  • Mancera-López, M. E., F. Esparza-García, B. Chávez-Gómez, R. Rodríguez-Vázquez, G. Saucedo-Castañeda, and J. Barrera-Cortés. 2008. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int. Biodeterior. Biodegrad. 61:151–160.
  • McGuinness, K. A. 1990. Effects of oil spills on macro-invertebrates of saltmarshes and mangrove forests in Botany Bay, New South Wales, Australia. J. Exp. Mar. Biol. Ecol. 142:121–135.
  • Mohn, W. W., and G. R. Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32:1161–1172.
  • Moliterni, E., L. Rodriguez, F. J. Fernández, and J. Villaseñor. 2012. Feasibility of different bioremediation strategies for treatment of clayey and silty soils recently polluted with diesel hydrocarbons. Water Air Soil Pollut. 223:2473–2482.
  • Morra, M. J. 2005. Bioremediation in soil: Influence of soil properties on organic contaminants and bacteria. In Bioremediation: Principles and applications, ed. R. L. Crawford and D. L. Crawford, 35–60. New York: Cambridge University Press.
  • Mrozik A., and Z. Piotrowska-Seget. 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res. 165:363–75.
  • Niqui-Arroyo, J. L., M. Bueno-Montes, R. Posada-Baquero, and J. J. Ortega-Calvo. 2006. Electrokinetic enhancement of phenanthrene biodegradation in creosotepolluted clay soil. Environ. Pollut. 142:326–332.
  • Niqui-Arroyo, J. L., and J. J. Ortega-Calvo. 2010. Effect of electrokinetics on the bioaccessibility of polycyclic aromatic hydrocarbons in polluted soils. J. Environ. Qual. 39:1993–1998.
  • Olson, P. E., A. Castro, M. Joern, N. M. DuTeau, E. A. H. Pilon-Smits, and K. F. Reardon. 2007. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J. Environ. Qual. 36:1461–1469.
  • Ortega-Calvo, J. J., M. C. Tejada-Agredano, C. Jimenez-Sanchez, E. Congiu, R. Sungthong, J. L. Niqui-Arroyo, and M. Cantos. 2013. Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J. Hazard. Mater. 261:733–745.
  • Owabor, C. N., and O. F. Ogunbor. 2009. Naphthalene and pyrene degradation in contaminated soil as a function of the variation of particle size and percent organic matter. Afr. J. Biotechnol. 6:436–440.
  • Pantsyrnaya, T., F. Blanchard, S. Delaunay, J. L. Goergen, E. Guedon, E. Guseva, and J. Boudrant. 2011. Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere 83:29–33.
  • Petryszak, P., H. Kołoczek, and P. Kaszycki. 2008. Biological treatment of wastewaters generated by furniture industry. Part 1. Laboratory-scale process for biodegradation of recalcitrant xenobiotics. Ecol. Chem. Eng. A 15:1129–1141.
  • Penet, S., R. Marchal, A. Sghir, and F. Monot. 2004. Biodegradation of hydrocarbon cuts used for diesel oil formulation. Appl. Microbiol. Biot. 66:40–47.
  • Querner, P., and A. Bruckner. 2010. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil Ecol. 45:293–297.
  • Romantschuk, M., I. Sarand, T. Petanen, R. Peltola, M. Jonsson-Vihanne, T. Koivula, K. Yrjala, and K. Haahtela. 2000. Means to improve the effect of in situ bioremediation of contaminated soil: An overview of novel approaches. Environ. Pollut. 107:179–185.
  • Ronen, Z., L. Vasiluk, A. Abeliovih, and A. Nejidat. 2000. Activity and survival of tribromophenol-degrading bacteria in a contaminated desert soil. Soil Biol. Biochem. 32:1643–1650.
  • Rosenberg, E., R. Legman, A. Kushmaro, R. Taube, E. Adler, and E. Z. Ron. 1992. Petroleum bioremediation: A multiphase problem. Biodegradation 3:337–350.
  • Schratzberger, M., F. Daniel, C. M. Wall, R. Kilbride, S. J. Macnaughton, S. E. Boyd, H. L. Rees, K. Lee, and R. P. J. Swannell. 2003. Response of estuarine meio- and macrofauna to in situ bioremediation of oil-contaminated sediment. Mar. Pollut. Bull. 46:430–443.
  • Silva, I. S., E. da Costa dos Santos, C. R. de Menezes, A. F. de Faria, E. Franciscon, M. Grossman, and L. R. Durrant. 2009. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour. Technol. 100:4669–4675.
  • Stroomberg, G. J., H. Zappey, R. J. C. A. Steen, C. A. M. van Gestel, F. Ariese, N. H. Velthorst, and N. M. van Straalen. 2004. PAH biotransformation in terrestrial invertebrates—a new phase II metabolite in isopods and springtails. Comp. Biochem. Physiol. C 138:129–137.
  • Szulc, A., D. Ambrożewicz, M. Sydow, Ł. Ławniczak, A. Piotrowska-Cyplik, R. Marecik, and Ł. Chrzanowski. 2014. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. J. Environ. Manage. 132:121–128.
  • Tsutsumi, H., Y. Hirota, and A. Hirashima. 2000. Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. II. Toxicity of a bioremediation agent with microbiological cultures in aquatic organisms. Mar. Pollut. Bull. 40:315–319.
  • Van Brummelen, T. C, and S. C. Stuijfzand. 1993. Effects of benzo(a)pyrene on survival, growth, and energy reserves in the terrestrial isopods onscus asellus and Porcellio scaber. Sci. Total Environ. 134(Suppl. 2):921–930.
  • Van Brummelen, T. C, R. A. Verweij, S. A. Wedzinga and C. A. M. van Gestel. 1996. Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32:315–341.
  • Van Gestel, C. A. M., J. van der Waarde, J. G. M. Derksen, E. Hoek, M. Veul, S. Bouwnes, B. Rusch, and R. Kronenburg. 2000. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil polluted soils. Environ. Toxicol. Chem. 20:1438–1449.
  • Van Hamme, J. D., A. Singh, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67:503–549.
  • Venosa, A. D., and X. Zhu. 2003. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci. Technol. B 8:163–178.
  • Vogel, T. M. 1996. Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol. 7:311–316.
  • Wan, J., J. L. Wilson, and T. L. Kieft. 1994. Influence of the gas—water interface on transport of microorganisms through unsaturated porous media. Appl. Environ. Microbiol. 60:509–516.
  • Wang, F., Z. C. Su, H. Yang, X. J. Li, G. P. Yang, and D. B. Dong. 2009. Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity. Ying Yong Sheng Tai Xue Bao 20:3020–3026.
  • Wong, D., E. Chai, K. Chu, and P. Dorn. 1999. Prediction of ecotoxicity of hydrocarbon-contaminated soils using physiochemical parameters. Environ. Toxicol. Chem. 18:2611–2621.
  • Yi, H., and D. E. Crowley. 2007. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ. Sci. Technol. 41:4382–4388.
  • Yu, K. S. H., A. H. Y. Wong, K. W. Y. Yau, Y. S. Wong, and N. F. Y. Tam. 2005. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar. Pollut. Bull. 51:1071–1077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.