224
Views
6
CrossRef citations to date
0
Altmetric
Articles

Microbial reduction of Cr(VI) in the presence of chromate conversion coating constituents

, , , &
Pages 174-182 | Published online: 03 Jun 2016

References

  • Agrawal, A., V. Kumar, and B. D. Pandey. 2006. Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—A review. Miner. Process. Extract. Metall. Rev. 27:99–130.
  • Barrera-Díaz, C. E., V. Lugo-Lugo, and B. Bilyeu. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 223:1–12.
  • Beleza, V. M., R. A. Boaventura, and M. F. Almeida. 2001. Kinetics of chromium removal from spent tanning liquors using acetylene production sludge. Environ. Sci. Technol. 35:4379–4383.
  • Bencheikh-Latmani, R., A. Obraztsova, M. R. Mackey, M. H. Ellisman, and B. M. Tebo. 2007. Toxicity of Cr(III) to Shewanella sp. strain MR-4 during Cr(VI) reduction. Environ. Sci. Technol. 41:214–220.
  • Bencheikh-Latmani, R., S. M. Williams, L. Haucke, C. S. Criddle, L. Wu, J. Zhou, and B. M. Tebo. 2005. Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl. Environ Microbiol. 71:7453–7460.
  • Breu, F., S. Guggenbichler, and J. Wollmann. 2008. Military specification, chemical conversion coatings on aluminum and aluminum alloys. MIL-DTL-5541f. United States Military Specification MIL-DTL-5541f. https://www.wbdg.org/ccb/FEDMIL/dtl5541f.pdf
  • Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh. 2006. Biofuel cells and their development. Biosens. Bioelectron. 21:2015–2045.
  • Chen, J. M., and O. J. Hao. 1996. Environmental factors and modeling in microbial chromium(VI) reduction. Water Environ. Res. 68:1156–1164.
  • Costa, M., and C. B. Klein. 2006. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 36:155–163.
  • Dakiky, M., M. Khamis, A. Manassra, and M. Mer'eb. 2002. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res. 6:533–540.
  • Daulton, T. L., B. J. Little, J. Jones-Meehan, D. A. Blom, and L. F. Allard. 2007. Microbial reduction of chromium from the hexavalent to divalent state. Geochim. Cosmochim. Acta 71:556–565.
  • Daulton, T. L., B. J. Little, K. Lowe, and J. Jones-Meehan. 2002. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J. Microbiol. Methods 50:39–54.
  • Dean, J. A. 1998. Lange's handbook of chemistry, 15th ed. New York: McGraw-Hill.
  • Ezaka, E., and C. U. Anyanwu. 2011. Chromium(VI) tolerance of bacterial strains isolated from sewage oxidation ditch. Int. J. Environ. Sci. 1:1725–1734.
  • Frankel, G. S. 2001. Mechanism of Al alloy corrosion and the role of chromate inhibitors. Columbus, OH: Ohio State University Columbus Fontana Corrosion Center.
  • Ganguli, A., and A. Tripathi. 2002. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl. Microbiol. Biotechnol. 58:416–420.
  • Kamaludeen, S. P. B., M. Megharaj, A. L. Juhasz, N. Sethunathan, and R. Naidu. 2003. Chromium-microorganism interactions in soils: Remediation implications. Toxicol. 178:93–164.
  • Kendig, M. W., and R. G. Buchheit. 2003. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 59:379–400.
  • Komori, K., A. Rivas, K. Toda, and H. Ohtake. 1990. Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioeng. 35:951–954.
  • Liu, C., T. Sun, X. Xu, and S. Dong. 2009a. Direct toxicity assessment of toxic chemicals with electrochemical method. Anal. Chim. Acta 641:59–63.
  • Liu, C., T. Sun, Y. Zhai, and S. Dong. 2009b. Evaluation of ferricyanide effects on microorganisms with multi-methods. Talanta 78:613–617.
  • Liu, L., Y. Yuan, F. Li, and C. Feng. 2011. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour. Technol. 102:2468–2473.
  • Marsh, T. L., N. M. Leon, and M. J. McInerney. 2000. Physiochemical factors affecting chromate reduction by aquifer materials. Geomicrobiol. J. 17:291–303.
  • McLean, J. S., T. J. Beveridge, and D. Phipps. 2000. Isolation and characterization of a chromium-reducing bacterium from a chromate copper arsenate-contaminated site. Environ. Microbiol. 2:611–619.
  • McGuire, M. J., N. K. Blute, C. Seidel, G. Qin, and L. Fong. 2006. Pilot-scale studies of hexavalent chromium removal from drinking water. J. Am. Water Works Assoc. 98:134–143.
  • Middleton, S. S., R. Bencheikh-Latmani, M. R. Mackey, M. H. Ellisman, B. M. Tebo, and C. S. Criddle. 2003. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced Cr and inhibits growth. Biotechnol. Bioeng. 83:627–637.
  • Myers, C. R., B. P. Carstens, W. E. Antholine, and J. M. Myers. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88:98–106.
  • Myers, C. R., and K. H. Nealson. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172:6232–6238.
  • Nepple, B. B., J. Kessi, and R. Bachofen. 2000. Chromate reduction by Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 25:198–203.
  • Palmer, C. D., and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92:25–40.
  • Parker, D. L., P. Borer, and R. Bernier-Latmani. 2011. The response of Shewanella oneidensis MR-1 to Cr(III) toxicity differs from that to Cr(VI). Front. Microbiol. 2:223.
  • Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–212.
  • Roundhill, D. M., and H. F. Koch. 2002. Methods and techniques for the selective extraction and recovery of oxoanions. Chem. Soc. Rev. 31:60–67.
  • Sandell, E. B. 1959. Colorimetric determination of traces of metals, 3rd ed., 392. New York: Interscience.
  • Sellamuthu, R., C. Umbright, R. Chapman, S. Leonard, S. Li, M. Kashon, and P. Joseph. 2011. Transcriptomics evaluation of hexavalent chromium toxicity in human dermal fibroblasts. J. Carcinog. Mutagen. 2:116.
  • Shakoori, A. R., M. Makhdoom, and R. U. Haq. 2000. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53:348–351.
  • Shen, H., and Y. T. Wang. 1994. Biological reduction of chromium by E. coli. J. Environ. Eng. 120:560–572.
  • Stookey, L. L. 1970. Ferrozine: A new spectrophotometric reagent for iron. Anal. Chem. 42:779–781.
  • Tanner, R. S. 2007. Cultivation of bacteria and fungi. In Manual of environmental microbiology, 3rd ed., ed. C. J. Hurst, R. L. Crawford, J. L. Garland, D. A. Lipson, A. L. Mills, and L. D. Stetzenbach, 69–78. Washington, DC: American Society of Microbiology.
  • Tokunaga, T. K., J. Wan, T. C. Hazen, E. Schwartz, M. K. Firestone, S. R. Sutton, M. Newville, K. R. Olson, A. Lanzirotti, and W. Rao. 2003. Distribution of chromium contamination and microbial activity in soil aggregates. J. Environ. Qual. 32:541–549.
  • Twite, R. L., and G. P. Bierwagen. 1998. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 33:91–100.
  • Viamajala, S., B. M. Peyton, W. A. Apel, and J. N. Petersen. 2002. Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol. Prog. 18:290–295.
  • Viamajala, S., B. M. Peyton, and J. N. Petersen. 2003. Modeling chromate reduction in Shewanella oneidensis MR-1: Development of a novel dual-enzyme kinetic model. Biotechnol. Bioeng. 83:790–797.
  • Wise, J. P., S. S. Wise, and J. E. Little. 2002. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 517:221–229.
  • Xia, L., E. Akiyama, G. Frankel, and R. McCreery. 2000. Storage and release of soluble hexavalent chromium from chromate conversion coatings equilibrium aspects of Cr(VI) concentration. J. Electrochem. Soc. 147:2556–2562.
  • Zhang, H. K., H. Lu, J. Wang, J. T. Zhou, and M. Sui. 2014. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite. Environ. Sci. Technol. 48:12876–12885.
  • Zhao, J., G. Frankel, and R. L. McCreery. 1998. Corrosion protection of untreated AA-2024-T3 in chloride solution by a chromate conversion coating monitored with Raman spectroscopy. J. Electrochem. Soc. 145:2258–2264.
  • Zhao, J., L. Xia, A. Sehgal, D. Lu, R. L. McCreery, and G. S. Frankel. 2001. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surf. Coat. Technol. 140:51–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.