1,693
Views
37
CrossRef citations to date
0
Altmetric
Article

Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings

&
Pages 1-19 | Published online: 28 Feb 2017

References

  • Abou-Shanab, R. A. I., P. van Berkum, and J. S. Angle. 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367.
  • Ahluwalai, S. S., and D. Goyal. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98:2243–2257.
  • Ahmed, N., A. Nawaz, and U. Badar. 2005. Screening of copper tolerant bacterial species and their potential to remove copper from the environment. Bull. Environ. Contam. Toxicol. 74:219–226.
  • Al-Garni, S. 2005. Biosorption of lead by Gram-ve capsulated and non-capsulated bacteria. Water SA 31:345–350.
  • Bacilio, M., H. Rodriguez, M. Moreno, J. P. Hernandez, and Y. Bashan. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol. Fert. Soil. 40:188–193.
  • Banerjee, S., R. Gothalwal, P. K. Sahu, and S. Sao. 2015. Microbial observation in bioaccumulation of heavy metals from the ash dyke of thermal power plants of Chhattisgarh, India. Adv. Biosci. Biotechnol. 6:131–138.
  • Belimov, A. A., S. B. Hontzea, V. I. Safronovaa, S. V. Demchinskayaa, G. Piluzzac, S. Bullittac, and B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37:241–250.
  • Bennisse, R., M. Labat, A. Elasli, F. Brhada, F. Chandad, P. P. Liegbott, M. Hibti, and A. I. Qatibi. 2004. Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J. Microbiol. Biotechnol. 20:759–766.
  • Benyehuda, G., J. Coombs, P. l. Ward, D. Balkwill, and T. Barkey. 2003. Metal resistance among aerobic chemoheterotrophic bacteria from the deep terrestrial subsurface. Can. J. Microbiol. 49:151–156.
  • Bhagat, N., M. Vermani, and H. S. Bajwa. 2016. Characterization of heavy metal (cadmium and nickle) tolerant Gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr. J. Microbiol. Res. 10:127–137.
  • Canovas, D., I. Cases, and V. De Lorenzo. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5:1242–1256.
  • Chamber of Mines South Africa. 2003. The contribution of the mining and minerals industry to sustainable development in South Africa. http://www.bullion.org.za (accessed May 6, 2014).
  • Chowdhury, N., P. Marschner, and R. G. Burns. 2011. Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biol. Biochem. 43:1229–1236.
  • Clausen, C. A. 2000. Isolating metal tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manage. Res. 18:264–268.
  • Coral, M. N. U., H. Korkmaz, B. Arikan, and G. Coral. 2005. Plasmid mediated heavy metal resistances in Enterobacter spp. Isolated from Sofulu landfill, in Adana, Turkey. Ann. Microbiol. 55:175–179.
  • Dell'amico, E., L. Cavalca, and V. Andreoni. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem. 40:74–78.
  • Duffus, J. H. 2002. Heavy metals—A meaningless term? IUPAC Technical Report. Pure Appl. Chem. 74:793–807.
  • Ellis, R. J., P. Morgan, A. J. Weightman, and J. C. Fry. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69:3223–3230.
  • Esposito, A., F. Pagnanelli, and F. Veglio. 2002. pH-related equilibria models for biosorption in single metal systems. Chem. Eng. Sci. 57:307–313.
  • Guo, H., S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wana, J. Chen, and Y. He. 2010. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101:8599–8605.
  • Hashim, M. A., S. Mukhopadhyay, J. N. Sahu, and B. Sengupta. 2011. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manage. 92:2355–2388.
  • Hassan, M. T., D. Van Der Lelie, D. Springael, U. Romling, N. Ahmed, and M. Mergeay. 1999. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417–425.
  • Henriques, I. D. S., and N. G. Love. 2007. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 41:4177–4186.
  • Ibekwe, A. M., J. A. Poss, S. R. Grattan, C. M. Grieve, and D. Suarez. 2010. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol. Biochem. 42:567–575.
  • Jan, F. A., M. Ishaq, S. Khan, I. Ihsanullah, I. Ahmad, and M. Shakirullah. 2010. A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (Lower Dir). J. Hazard. Mater. 179:612–6215.
  • Kamnev, A. A., A. Tugarova, L. Antonyuk, P. Tarantilis, M. Polissiou, and P. H. Gardiner. 2005. Effects of heavy metals on plant-associated rhizobacteria: Comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J. Trace Elem. Med. Biol. 19:91–95.
  • King, P., N. Rakesh, S. Beenalahari, Y. P. Kumar, and V. S. R. Prasad. 2007. Removal of lead from aqueous solution using Syzygium cumini L.: Equilibrium and kinetic studies. J. Hazard. Mater. 142:340–347.
  • Laxman, S. R., and S. More. 2002. Reduction of hexavalent chromium by Streptomyces griseus. Miner. Eng. 15:831–837.
  • Lee, Y. K., H. Chang, H. Lee, H. Park, K. Le, and M. H. Joe. 2006. Isolation of a novel plasmid, pNi15, from Enterobacter sp. Ni15 containing a nickel resistance gene. FEMS Microbiol. Lett. 257:177–181.
  • Lei, J. Q., S. Y. Li, and Z. Z. Jin. 2008. Comprehensive eco-environmental effects of the shelter-forest ecological engineering along the Tarim Desert Highway. Chin. Sci. Bull. 53:190–202.
  • Liu, W. X., L. F Shen, J. Liu, Y. Wang, and S. R. Li. 2007. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soils near Zhengzhou City, People's Republic of China. Bull. Environ. Contam. Toxicol. 79:209–213.
  • Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock biology of microorganisms, 10th ed. Upper Saddle River, NJ: Pearson Education.
  • Malik, A. 2004. Metal bioremediation through growing cells. Environ. Int. 30:261–278.
  • Malik, A., I. F. Khan, and A. Alem. 2002. Plasmid incidence in bacteria from agricultural and industrial soils. World J. Microb. Biotechnol. 18:827–833.
  • Mendez, M. O., J. W. Nielson, and R. M. Maier. 2008. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74:3899–3907.
  • Mergeay, M., D. Nies, H. G. Schlegel, J. Gertis, P. Charles, and F. van Gusegem. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162:328–334.
  • Mishra, S., and M. Doble. 2008. Novel chromium tolerant microorganisms: Isolation, characterization and their biosorption capacity. Ecotoxicol. Environ. Saf. 71:874–879.
  • Mounaouer, B., A. Nesrine, and H. Abdennaceur. 2014. Identification and characterization of heavy metal-resistant bacteria selected from different polluted sources. Desalin. Water Treat. 52:7037–7052.
  • Navarro, M. C., C. Pérez-Sirvent, M. J. Martínez-Sánchez, J. Vidal, P. J. Tovar, and J. Bech. 2008. Abandoned mine site as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 96:183–193.
  • Naz, N., H. K. Young, N. Ahmed, and G. M. Gadd. 2005. Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl. Environ. Microbiol. 71:4610–4618.
  • Nies, A., D. H. Nies, and S. Silver. 1990. Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265:5648–5653.
  • Nies, D. H. 1999. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51:730–750.
  • Nies, D. H., A. Nies, and S. Silver. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. U. S. A. 86:7351–7355.
  • Nieto, J. J., A. Ventosa, and F. Ruiz-Berraquero. 1987. Susceptibility of halobacteria to heavy metals. Appl. Environ. Microbiol. 53:1199–1202.
  • Oyetibo, G. O., M. O. Ilori, S. A. Adebusoye, O. S. Obayori, and O. O. Amund. 2010. Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigeria in contaminated systems. Environ. Monit. Assess. 168:305–314.
  • Pal, A., S. Dutta, P. K. Mukherjee, and A. K. Paul. 2005. Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J. Basic Microbiol. 45:207–218.
  • Pardo, R., M. Herguedas, and E. Barrado. 2003. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem. 376:26–33.
  • Paul, A. K., and A. Pal. 2004. Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol. Res. 159:347–354.
  • Piotrowska-Seget, Z., M. Cycon, and J. Kozdro. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil. Ecol. 28:237–246.
  • Prescott, L. M., and J. P. Harley. 2002. Laboratory exercises in microbiology, 5th ed. New York, USA: McGraw-Hill.
  • Qin, Y., B. Shi, and J. Liu. 2006. Application of chitosan and alginate in treating waste water containing heavy metal ions. Indian J. Chem. Technol. 13:464–469.
  • Raja, E., K. Anbazhagan, and G. S. Selvam. 2006. Isolation and characterization of a metal resistant Pseudomonas aeruginosa strain. World J. Microbiol. Biotechnol. 22:577–586.
  • Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2006. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748.
  • Rani, A., S. Yogesh, B. Souche, and G. Reeta. 2009. Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int. Biodeterior. Biodegrad. 63:62–66.
  • Rosewarne, C. P., V. Pettigrove, H. W. Stokes, and Y. M. Parsons. 2010. Class 1 integrons in benthic bacterial communities: Abundance, association with Tn4O2-like trans-position modules and evidence for co-selection with heavy-metal resistance. FEMS Microbiol. Ecol. 72:35–46.
  • Samanta, A., P. Bera, M. Khatun, C. Sinha, P. Pal, A. Lalee, and A. Mandal. 2012. An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J. Microbiol. Biotechnol. Res. 2:178–189.
  • Sevgi, E., G. Coral, M. A. Gizir, and M. K. Sangün. 2010. Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils. Turk. J. Biol. 34:423–431.
  • Stoppel, R., and H. G. Schlegel. 1995. Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl. Environ. Microbiol. 6:2276–2285.
  • Thacker, U., R. Parikh, Y. Shouche, and R. D. Madamwa. 2007. Reduction of chromate by cell-free extract of Brucella sp. Isolated from Cr(VI) contaminated sites. Bioresour. Technol. 98:1541–1547.
  • Tsai, Y. P., S. J. You, T. Y. Pai, and K. W. Chen. 2005. Effect of cadmium on composition and diversity of bacterial communities in activated sludges. Int. Biodeterior. Biodegrad. 55:285–291.
  • Umrania, V. V. 2006. Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour. Technol. 97:1237–1242.
  • US Environmental Protection Agency. 2006. SW-846: Test methods for evaluating solid wastes. http://www.epa.gov/sw-846/main.htm (accessed April 16, 2014).
  • Velasquez, L., and J. Dussan. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167:713–716.
  • Vieira, R. H., and B. Volesky. 2000. Biosorption: A solution to pollution. Int. Microbiol. 3:17–24.
  • Vijayaraghavan, K., and Y. S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnol. Adv. 126:266–291.
  • Wang, F., J. Yao, Y. Si, H. Chen, M. Russel, K. Chen, Y. Qian, G. Zaray, and E. Bramanti. 2010. Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater. 173:510–516.
  • Wang, J., and C. Chen. 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27:195–226.
  • Wenderoth, D. F., and H. H. Reber. 1999. Correlation between structural diversity and catabolic versatility of metal-affected prototrophic bacteria in soil. Soil Biol. Biochem. 31:345–352.
  • Whiteley, C. G., and D. J. Lee. 2006. Enzyme technology and biological remediation. Enzyme Microb. Technol. 38:291–316.
  • Wu, S. C., Y. M. Luo, K. C. Cheung, and M. H. Wong. 2006. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study. Environ. Pollut. 144:765–773.
  • Yan, G., and T. Virarghavan. 2000. Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA. 26:119–123.
  • Yoshida, N., T. Kato, T. Yoshida, K. Ogawa, M. Yamashita, and Y. Murooka. 2002. Bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium by Escherichia coli expressing a metallothionein fused to β-galactosidase. Biotechniques 32:551–558.
  • Zolgharnein, H., M.L.M. Azmi, M. Z. Saad, A. R. Mutalib, and C. A. Mohamed. 2007. Detection of plasmids in heavy metal resistance bacteria isolated from the Persian Gulf and enclosed industrial areas. Iran. J. Biotechnol. 5:232–239.
  • Zulkali, M. M., A. L. Ahmad, and N. H. Norulakmal. 2006. Oryza sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution. Bioresour. Technol. 97:21–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.