290
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge

, , &
Pages 53-71 | Published online: 20 Apr 2019

References

  • Afzal, M., S. Iqbal, S. Rauf, and Z. M. Khalid. . 2007. Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei. J. Hazard. Mat. 149 (1):60–66. doi: 10.1016/j.jhazmat.2007.03.046.
  • Agarry, S. E., A. O. Durojaiye, and B. O. Solomon. . 2008. Microbial degradation of phenols: A review. Int. J. Environ. Pollut. 32 (1):12. doi: 10.1504/IJEP.2008.016895.
  • Ali, O., A. Namane, and A. Hellal. . 2013. Use and recycling of Ca-alginate biocatalyst for removal of phenol from wastewater. J. Ind. Eng. Chem. 19 (4):1384–1390. doi: 10.1016/j.jiec.2012.12.045.
  • APHA (American Public Health Association). 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC.
  • Arutchelvan, V., V. Kanakasabai, R. Elangovan, S. Nagarajan, and V. Muralikrishnan. . 2006. Kinetics of high strength phenol degradation using Bacillus brevis. J. Hazard. Mat. 129 (1–3):216–222. doi: 10.1016/j.jhazmat.2005.08.040.
  • Arutchelvan, V., V. Kanakasabai, S. Nagarajan, and V. Muralikrishnan. . 2005. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mat. B127:238–243. doi: 10.1016/j.jhazmat.2005.04.043.
  • Banerjee, A., and A. K. Ghoshal. . 2010. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresour. Technol. 101 (14):5501–5507. doi: 10.1016/j.biortech.2010.02.018.
  • Banerjee, A., and A. K. Ghoshal. . 2017. Biodegradation of an actual petroleum wastewater in a packed bed reactor by an immobilized biomass of Bacillus cereus. J. Environ. Chem. Eng. 5 (2):1696–1702. doi: 10.1016/j.jece.2017.03.008.
  • Basak, B.,. B. Bhunia, and A. Dey. . 2014. Studies on potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation. Int. Biodeterior. Biodegradation. 93:107–117. doi: 10.1016/j.ibiod.2014.05.012.
  • Bramhachari, P. V., D. R. S. Reddy, and D. Kotresha. . 2016. Biodegradation of catechol by free and immobilized cells of Achromobacter xylosoxidans strain 15DKVB isolated from paper and pulp industrial effluents. Biocatal. Agric. Biotechnol. 7:36–44. doi: 10.1016/j.bcab.2016.05.003.
  • Chung, T., H. Tseng, and R. Juang. . 2003. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem. 38 (10):1497–1507. doi: 10.1016/S0032-9592(03)00038-4.
  • Djokic, L., T. Narancic, M. Biocanin, E. Saljnikov, E. Casey, B. Vasiljevic, and J. Nikodinovic-Runic. . 2013. Phenol removal from four different natural soil types by Bacillus sp. PS11. Appl. Soil. Ecol. 70:1–8. doi: 10.1016/j.apsoil.2013.04.002.
  • Dursun, A. Y., and O. Tepe. . 2005. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J. Hazard. Mat. B126:105–111. doi: 10.1016/j.jhazmat.2005.06.013.
  • Farrell, A., and B. Quilty. . 1999. Degradation of monochlorophenols by a mixed microbial community via a meta cleavage pathway. Biodegradation. 10 (5):353–362. Mismatch]
  • Ge, Q., X. Yue, and G. Wang. . 2015. Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7. Chinese J. Chem. Eng. 23 (5):835–841. doi: 10.1016/j.cjche.2015.02.001.
  • Haddadi, A., and M. Shavandi. . 2013. Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int. Biodeterior. Biodegradation. 85:29–34. doi: 10.1016/j.ibiod.2013.06.005.
  • Herrera, Y., A. I. Okoh, L. Alvarez, N. Robledo, and M. R. Trejo-Hernández. . 2008. Biodegradation of 2,4-dichlorophenol by a Bacillus consortium. World J. Microbiol. Biotechnol. 24 (1):55–60. doi: 10.1007/s11274-007-9437-0.
  • Hoskeri, R. S., S. I. Mulla, and H. Z. Ninnekar. . 2014. Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatal. Agric. Biotechnol. 3 (4):390–396. doi: 10.1016/j.bcab.2014.03.001.
  • Juarez Jimenez, B., P. Reboleiro Rivas, J. Gonzalez Lopez, C. Pesciaroli, P. Barghini, and M. Fenice. . 2012. Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process . J. Biotechnol. 157 (1):148–153. doi: 10.1016/j.jbiotec.2011.09.026.
  • Kafkewitz, D., F. Fava, and P. M. Armenante. . 1996. Effect of vitamins on the aerobic degradation of 2-chlorophenol, 4-chlorophenol, and 4-chlorobiphenyl. Appl. Microbiol. Biotechnol. 46 (4):414–421.
  • Karatay, S. E., and G. Dönmez. . 2014. An economical phenol bioremoval method using Aspergillus versicolor and agricultural wastes as a carbon source. Ecol. Eng. 73:224–228. doi: 10.1016/j.ecoleng.2014.09.061.
  • Khleifat, K. M. . 2006. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 41 (9):2010–2016. doi: 10.1016/j.procbio.2006.04.015.
  • Kiliç, N. K. . 2009. Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters. Int. Biodeterior. Biodegradation. 63 (6):778–781.
  • Kotresha, D., and G. M. Vidyasagar. . 2008. Isolation and characterization of phenol degrading Pseudomonas aeruginosa MTCC 4996. World J. Microbiol. Biotechnol. 24 (4):541–547. doi: 10.1007/s11274-007-9508-2.
  • Kumar, A., S. Kumar, and S. Kumar. . 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem. Eng. J. 22 (2):151–159. doi: 10.1016/j.bej.2004.09.006.
  • Kumar, S. S., M. S. Kumar, D. Siddavattam, and T. B. Karegoudar. . 2012. Generation of continuous packed bed reactor with PVA – Alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N, N-dimethylformamide from industrial effluents. J. Hazard. Mat. 199–200:58–63. doi: 10.1016/j.jhazmat.2011.10.053.
  • Kumar, G., A. Mudhoo, P. Sivagurunathan, D. Nagarajan, A. Ghimire, C. Lay, C. Lin, D. Lee, and J. Chang. . 2016. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour. Technol. 219:725–737. doi: 10.1016/j.biortech.2016.08.065.
  • Kureel, M. K., S. R. Geed, B. S. Giri, B. N. Rai, and R. S. Singh. . 2017. Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3. Bioresour. Technol. 242:92–100. doi: 10.1016/j.biortech.2017.03.167.
  • Kurzbaum, E., Y. Raizner, O. Cohen, R. Y. Suckeveriene, A. Kulikov, B. Hakimi, L. I. Kruh, R. Armon, Y. Farber, and O. Menashe. . 2017. Encapsulated Pseudomonas putida for phenol biodegradation: Use of a structural membrane for construction of a well-organized confined particle. Water Res. 121:37–45. doi: 10.1016/j.watres.2017.04.079.
  • Liu, J., X. Jia, J. Wen, and Z. Zhou. . 2012. Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochem. Eng. J. 67:156–166. doi:10.1016/j.bej.2012.06.008.
  • Lu, D., Y. Zhang, S. Niu, L. Wang, S. Lin, C. Wang, W. Ye, and C. Yan. . 2012. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method. Biodegradation. 23 (2):209–219. doi:10.1007/s10532-011-9500-2.
  • Liu, Y. J., A. N. Zhang, and X. C. Wang. . 2009. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem. Eng. J. 44 (2–3):187–192. doi: 10.1016/j.bej.2008.12.001.
  • Luz, E., and Y. Bashan. . 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 101:1611–1627. doi: 10.1016/j.biortech.2009.09.043.
  • Marrot, B., A. Barrios-Martinez, P. Moulin, and N. Roche. . 2006. Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem. Eng. J. 30 (2):174–183. doi: 10.1016/j.bej.2006.03.006.
  • Nabweteme, R., H. S. Kwon, S. Park, C. H. Lee, and I. S. Ahn. . 2016. Immobilized culture of Sulfurovumlithotrophicum 42BKTT in polyurethane foam cubes. J. Ind. Eng. Chem. 39:176–180. doi: 10.1016/j.jiec.2016.05.026.
  • Olaniran, A. O., and E. O. Igbinosa. . 2011. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere. 83 (10):1297–1306. doi: 10.1016/j.chemosphere.2011.04.009.
  • Patil, N. K., Y. Veeranagouda, M. H. Vijaykumar, S. Anand-Nayak, and T. B. Karegoudar. . 2006. Enhanced and potential degradation of o-phthalate by Bacillus sp. immobilized cells in alginate and polyurethane. Int. Biodeterior. Biodegradation. 57 (2):82–87. doi:10.1016/j.ibiod.2005.11.007.
  • Pradeep, N. V., S. Anupama, K. Navya, H. N. Shalini, M. Idris, and U. S. Hampannavar. . 2015. Biological removal of phenol from wastewaters: a mini review. Appl. Water Sci. 5 (2):105–112. doi: 10.1007/s13201-014-0176-8.
  • Pradhan, N., and A. O. Ingle. . 2007. Mineralization of phenol by a Serratia plymuthica strain GC isolated from sludge sample. Int. Biodeterior. Biodegradation. 60 (2):103–108. doi: 10.1016/j.ibiod.2007.01.001.
  • Sahinkaya, E., and F. B. Dilek. . 2007. Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures. J. Biotechnol. 127 (4):716–726. doi: 10.1016/j.jbiotec.2006.08.009.
  • Shim, J., J. M. Lim, P. J. Shea, and B. T. Oh. . 2014. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. J. Hazard. Mat. 272:129–136. doi:10.1016/j.jhazmat.2014.03.010.
  • Shourian, M., K. A. Noghabi, H. S. Zahiri, T. Bagheri, R. Karbalaei, M. Mollaei, I. Rad, S. Ahadi, J. Raheb, and H. Abbasi. . 2009. Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination. 246 (1–3):577–594. doi: 10.1016/j.desal.2008.07.015.
  • Sivasubramanian, S., and S. K. R. Namasivayam. . 2015. Phenol degradation studies using microbial consortium isolated from environmental sources. J. Environ. Chem. Eng. 3 (1):243–252. doi: 10.1016/j.jece.2014.12.014.
  • Tsai, S., C. Lin, C. Wu, and C. Shen. . 2013. Kinetics of xenobiotic biodegradation by the pseudomans sp. YATO411 strain in suspension and cell-immobilized beads. J. Taiwan Inst. Chem. E. 44 (2):303–309. doi: 10.1016/j.jtice.2012.11.004.
  • Viggiani, A., G. Olivieri, L. Siani, A. Di Donato, A. Marzocchella, P. Salatino, P. Barbieri, and E. Galli. . 2006. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J. Biotechnol. 123 (4):464–477. doi: 10.1016/j.jbiotec.2005.12.024.
  • Wang, Y., Y. Tian, B. Han, H. B. Zhao, J. N. Bi, and B. L. Cai. . 2007. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. (China) 19 (2):222–225.
  • Yang, C. F., and C. M. Lee. . 2007. Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. Int. Biodeterior. Biodegradation. 59 (3):206–210. doi: 10.1016/j.ibiod.2006.09.010.
  • Yao, H., Y. Ren, X. Deng, and C. Wei. . 2011. Dual substrates biodegradation kinetics of m-cresol and pyridine by Lysinibacillus cresolivorans. J. Hazard. Mat. 186 (2–3):1136–1140. doi: 10.1016/j.jhazmat.2010.11.118.
  • Yujian, W., Y. Xiaojuan, L. Hongyu, and T. Wei. . 2006. Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polym. Degrad. Stab. 91 (10):2408–2414. doi: 10.1016/j.polymdegradstab.2006.03.015.
  • Zheng, C., J. Zhou, J. Wang, B. Qu, J. Wang, H. Lu, and H. Zhao. . 2009. Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. J. Hazard. Mat. 168 (1):298–303. doi: 10.1016/j.jhazmat.2009.02.029.
  • Ziagova, M., and M. Liakopoulou-Kyriakides. . 2007. Comparison of cometabolic degradation of 1,2-dichlorobenzene by Pseudomonas sp. and Staphylococcus xylosus. Enzyme Microb. Technol. 40 (5):1244–1250. doi: 10.1016/j.enzmictec.2006.09.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.