397
Views
16
CrossRef citations to date
0
Altmetric
Note

Effects of community-accessible biochar and compost on diesel-contaminated soil

, &
Pages 107-117 | Published online: 20 Apr 2019

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. . 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol. 25 (1):107–123. doi: 10.1016/j.ejpe.2015.03.011.
  • Agegnehu, G., A. K. Srivastava, and M. I. Bird. . 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 119:156–170. doi: 10.1016/j.apsoil.2017.06.008.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 2016. ATSDR – Substance listing page. http://www.atsdr.cdc.gov/substances/indexAZ.asp#A.
  • Aisien, F. A., E. T. Aisien, and I. O. Oboh. . 2015. Phytoremediation of petroleum-polluted soils. In Phytoremediation. ed. A. A. Ansari, S .S. Gill, R. Gill, G. R. Lanza, and L. Newman. , 243–252. Switzerland: Springer International Publishing.
  • American Petroleum Institute (API). 2016. Environmental expenditures by the U.S. Oil and natural gas industry, 1990–2015. API. http://www.api.org/∼/media/Files/Publications/Environmental-Expenditures-2015.pdf.
  • Anderson, C. R., L. M. Condron, T. J. Clough, M. Fiers, A. Stewart, R. A. Hill, and R. R. Sherlock. . 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia – International Journal of Soil Biology 54:309–320. doi: 10.1016/j.pedobi.2011.07.005.
  • Banks, M. K., A. P. Schwab, B. Liu, P. A. Kulakow, J. S. Smith, and R. Kim. . 2003. The effect of plants on the degradation and toxicity of petroleum contaminants in soil: A field assessment. In Advances in biochemical engineering biotechnology: Phytoremediation. ed. D. T. Tsao. , 75–96. Berlin: Springer International Publishing.
  • Bastida, F., N. Jehmlich, K. Lima, B. E. L. Morris, H. H. Richnow, T. Hernández, M. von Bergen, and C. García. . 2016. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics 135:162–169. doi: 10.1016/j.jprot.2015.07.023.
  • Bushnaf, K. M., S. Puricelli, S. Saponaro, and D. Werner. . 2011. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. Journal of Contaminant Hydrology 126 (3–4):208–215. doi: 10.1016/j.jconhyd.2011.08.008.
  • Chawla, N., S. Sunita, K. Kamlesh, and R. Kumar. . 2013. Bioremediation: An emerging technology for remediation of pesticides. Research Journal of Chemistry and Environment 17:88–105.
  • Chen, M., P. Xu, G. Zeng, C. Yang, D. Huang, and J. Zhang. . 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances 33 (6):745–755. doi: 10.1016/j.biotechadv.2015.05.003.
  • Cook, R. L., and D. Hesterberg. . 2013. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. International Journal of Phytoremediation 15 (9):844–860. doi: 10.1080/15226514.2012.760518.
  • Das, N., and P. Chandran. . 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International 2011:941810. doi: 10.4061/2011/941810.
  • dos Santos, J. J., and L. T. Maranho. . 2018. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. Journal of Environmental Management 210:104–113. doi: 10.1016/j.jenvman.2018.01.015.
  • Edenborn, S. L., H. M. Edenborn, R. M. Krynock, and K. L. Z. Haug. . 2015. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar. Journal of Environmental Management 150:226–234. doi: 10.1016/j.jenvman.2014.11.023.
  • Ennis, C. J., A. G. Evans, M. Islam, T. K. Ralebitso-Senior, and E. Senior. . 2012. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology 42 (22):2311–2364. doi: 10.1080/10643389.2011.574115.
  • Fang, Y., B. Singh, B. P. Singh, and E. Krull. . 2014. Biochar carbon stability in four contrasting soils: Biochar carbon stability in soils. European Journal of Soil Science 65 (1):60–71. doi: 10.1111/ejss.12094.
  • Frederick, R. J., and M. Egan. . 1994. Environmentally compatible applications of biotechnology. BioScience 44 (8):529–535. doi: 10.2307/1312280.
  • García-Delgado, C., I. Alfaro-Barta, and E. Eymar. . 2015. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. Journal of Hazardous Materials 285:259–266. doi: 10.1016/j.jhazmat.2014.12.002.
  • Hale, S. E., J. Lehmann, D. Rutherford, A. R. Zimmerman, R. T. Bachmann, V. Shitumbanuma, A. O’Toole, K. L. Sundqvist, H. P. H. Arp, and G. Cornelissen. . 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology 46 (5):2830–2838. doi: 10.1021/es203984k.
  • Hall, J., K. Soole, and R. Bentham. . 2011. Hydrocarbon phytoremediation in the family fabacea—A review. International Journal of Phytoremediation 13 (4):317–332. doi: 10.1080/15226514.2010.495143.
  • Han, T., Z. Zhao, M. Bartlam, and Y. Wang. . 2016. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Environmental Science and Pollution Research 23 (21):21219–21228. doi: 10.1007/s11356-016-7236-6.
  • Hillel, D. . 2008. Soil physical attributes. In Soil in the environment: Crucible of terrestrial life, 55–77. Oxford, UK: Elsevier.
  • Interstate Technology Regulatory Council (ITRC). 2014. Appendix C. Chemistry of petroleum. ITRC. https://www.itrcweb.org/PetroleumVI-Guidance/Content/Appendix%20C.%20Chemistry%20of%20Petroleum.htm.
  • Ji, Y., G. Mao, Y. Wang, and M. Bartlam. . 2013. Structural insights into diversity and N-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in Microbiology 4:58.
  • Juwarkar, A. A., S. K. Singh, and A. Mudhoo. . 2010. A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology 9 (3):215–288. doi: 10.1007/s11157-010-9215-6.
  • Kaczyńska, G., A. Borowik, and J. Wyszkowska. . 2015. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air & Soil Pollution 226 (11):1–11. doi: 10.1007/s11270-015-2642-9.
  • Kästner, M., and A. Miltner. . 2016. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Applied Microbiology and Biotechnology 100 (8):3433–3449. doi: 10.1007/s00253-016-7378-y.
  • Khudur, L., E. Shahsavari, A. Miranda, P. Morrison, D. Nugegoda, and A. Ball. . 2015. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environmental Science and Pollution Research 22 (19):14809–14819. doi: 10.1007/s11356-015-4624-2.
  • Kookana, R. S., A. K. Sarmah, L. van Zwieten, E. Krull, and B. Singh. . 2011. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy 112:103–143. doi: 10.1016/B978-0-12-385538-1.00003-2.
  • Kujat, J. D. . 1999. A comparison of popular remedial technologies for petroleum contaminated soils from leaking underground storage tanks. Electronic Green Journal 1 (11). doi: 10.3389/fmicb.2013.00058. https://escholarship.org/uc/item/3840k0vd.
  • Lim, M. W., E. V. Lau, and P. E. Poh. . 2016. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Marine Pollution Bulletin 109 (1):14–45. doi: 10.1016/j.marpolbul.2016.04.023.
  • Malachowska-Jutsz, A., and J. Kalka. . 2010. Influence of mycorrhizal fungi on remediation of soil contaminated by petroleum hydrocarbons. Fresenius Environmental Bulletin 19 (12b):3217–3223.
  • Marchand, C., W. Hogland, F. Kaczala, Y. Jani, L. Marchand, A. Augustsson, and M. Hijri. . 2016. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. International Journal of Phytoremediation 18 (11):1136–1147. doi: 10.1080/15226514.2016.1186594.
  • Megharaj, M.,. B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, and R. Naidu. . 2011. Bioremediation approaches for organic pollutants: A critical perspective. Environment International 37 (8):1362–1375. no.doi: 10.1016/j.envint.2011.06.003.
  • Nwankwegu, A. S., M. U. Orji, and C. O. Onwosi. . 2016. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162:148–156. doi:10.1016/j.chemosphere.2016.07.074.
  • Ogbonnaya, U., and K. T. Semple. . 2013. Impact of biochar on organic contaminants in soil: A tool for mitigating risk? Agronomy 3 (2):349–375. doi: 10.3390/agronomy3020349.
  • Oliveira, V., N. Gomes, A. Almeida, A. Silva, H. Silva, and Â. Cunha. . 2015. Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microbial Ecology 69 (1):1–12. doi: 10.1007/s00248-014-0455-9.
  • Phillips, L. A., C. W. Greer, R. E. Farrell, and J. J. Germida. . 2009. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Applied Soil Ecology 42 (1):9–17. doi: 10.1016/j.apsoil.2009.01.002.
  • PRO-ACT. 1999. Petroleum fuels: Basic composition and properties. Fact Sheet. Pollution Prevention Infohouse. http://infohouse.p2ric.org/.
  • Qin, G., D. Gong, and M.-Y. Fan. . 2013. Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. International Biodeterioration & Biodegradation 85:150–155. doi: 10.1016/j.ibiod.2013.07.004.
  • Romano, N., and A. Santini. . 2002. Physical methods. Methods of Soil Analysis, Series 5.4 Chapter 3, 721–738. doi: 10.2136/sssabookser5.4.c26.
  • Sayara, T., M. Sarrà, and A. Sánchez. . 2010. Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. Journal of Hazardous Materials 179 (1–3):999–1006. doi: 10.1016/j.jhazmat.2010.03.104.
  • Semple, K. T., A. W. J. Morriss, and G. I. Paton. . 2003. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science 54 (4):809–818. doi: 10.1046/j.1351-0754.2003.0564.x.
  • Singh, M., G. Pant, K. Hossain, and A. Bhatia. . 2017. Green remediation. Tool for safe and sustainable environment: A review. Applied Water Science 7 (6):2629–2635. doi: 10.1007/s13201-016-0461-9.
  • Sizmur, T., R. Quilliam, A. Puga, E. Moreno-Jiménez, L. Beesley, and J. Gomez-Eyles. . 2016. Application of biochar for soil remediation. In Agricultural and environmental applications of biochar: Advances and barriers, 295–324. Madison: Soil Science Society of America, Inc. doi: 10.2136/sssaspecpub63.2014.0046.5.
  • Sleegers, F. . 2010. Phytoremediation as green infrastructure and a landscape of experiences. Paper presented at the Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 15, University of Massachusetts. https://scholarworks.umass.edu/cgi/viewcontent.cgi/article=1143&context=soilsproceedings.
  • Smith, P. . 2016. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology 22 (3):1315–1324. doi: 10.1111/gcb.13178.
  • Stephenson, C., and C. R. Black. . 2014. One step forward, two steps back: The evolution of phytoremediation into commercial technologies. Bioscience Horizons 7:hzu009. doi: 10.1093/biohorizons/hzu009.
  • US EPA. 2016. EPA principles for greener cleanups. Overviews and factsheets. https://www.epa.gov/greenercleanups/epa-principles-greener-cleanups.
  • US EPA. 2017. Semiannual report of UST performance measures: End of fiscal year 2017. http://www.epa.gov/ust/ust-performance-measures.
  • Varjani, S. J., and V. N. Upasani. . 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation 120:71–83. doi: 10.1016/j.ibiod.2017.02.006.
  • Villa, R. D., A. G. Trovó, and R. F. P. Nogueira. . 2010. Diesel degradation in soil by Fenton process. Journal of the Brazilian Chemical Society 21 (6):1089–1095. doi: 10.1590/S0103-50532010000600019.
  • von Oettingen, W. F. . 1942. The toxicity and potential dangers of aliphatic and aromatic hydrocarbons. The Yale Journal of Biology and Medicine 15 (2):167–184. PMCID: PMC2601242.
  • Weir, E., and S. Doty. . 2016. Social acceptability of phytoremediaion: The role of risk and values. International Journal of Phytoremediation 18 (10):1029–1036. doi: 10.1080/15226514.2016.1183571.
  • Wu, H., C. Lai, G. Zeng, J. Liang, J. Chen, J. Xu, J. Dai, X. Li, J. Liu, M. Chen. ., et al. 2017. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review. Critical Reviews in Biotechnology 37 (6):754–764. doi: 10.1080/07388551.2016.1232696.
  • Xu, G., J. Sun, H. Shao, and S. X. Chang. . 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering 62:54–60. doi: 10.1016/j.ecoleng.2013.10.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.