167
Views
3
CrossRef citations to date
0
Altmetric
Articles

Bioaugmentation of endosulfan contaminated soil in artificial bed treatment using selected fungal species

, , , & ORCID Icon
Pages 196-214 | Published online: 15 Jul 2019

References

  • Aneja, K. R. 2007. Experiments in microbiology, plant pathology and biotechnology. 4th ed., 69–71. New Delhi, India: New Age International (P) Ltd.
  • ATSDR. 2013. Draft toxicological profile for endosulfan. U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/toxprofiles/tp41-p.pdf
  • Awasthi, N., R. Ahuja, and A. Kumar. 2000. Factors influencing the degradation of soil-applied endosulfan Isomers. Soil Biology and Biochemistry 32 (11-12):1697–705. doi: 10.1016/S0038-0717(00)00087-0.
  • Barnett, H. L., and B. B. Hunter. 1972. Illustrated genera of imperfect fungi, 3rd ed. Minneapolis, MN: Burgess Publishing Company.
  • Bhalerao, T. S. 2012. Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turkish Journal of Biology 36:561–7.
  • Bisht, J. 2014. Bioremediation of pesticide residues in soil using fungi. Ph.D. Thesis, Kumaun University Nainital, India.
  • Bisht, J., and N. S. K. Harsh. 2016. Bioremediation of pesticide contaminated soil: A cost effective approach to improve soil fertility. In Microbes for restoration of degraded land, ed. D. J. Bagyaraj and Jamaluddin, 97–113. New Delhi, India: New India Publishing Agency.
  • Bisht, J., N. S. K. Harsh, L. M. S. Palni, V. Agnihotri, and A. Kumar. 2019. Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation Journal 29 (3):63–77. doi: 10.1002/rem.21599.
  • Bisht, J., L. M. S. Palni, and N. S. K. Harsh. 2018. Pesticide contamination and human health. In Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems, ed. Khursheed A. Wani and Mamta, 137–150. Hershey, PA: IGI Global.
  • Bisht, J., K. Sharma, and N. S. K. Harsh. 2015. Use of fungi in bioremediation. In Advances in mycorrhiza & useful microbes in forestry, ICFRE state of knowledge Series-II, ed. N. S. K. Harsh and A. Kumar, 152–82. Dehradun, India: Greenfields Publishers.
  • Burns, R. G. 1978. Enzyme activity in soil: Some theoretical and practical considerations. In Soil enzymes, ed. R. G. Bums, 295–340. London: Academic.
  • Chen, S., C. Chang, Y. Deng, S. An, Y. H. Dong, J. Zhou, M. Hu, G. Zhong, and L. H. Zhang. 2014. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. Journal of Agricultural and Food Chemistry 12:147–57. doi: 10.1021/jf404908j.
  • Chritian, V. 2001. Enzymes of lignin-degrading fungi: Degradation of xenobiotic compounds. PhD Thesis, Saurashtra University, 145 p.
  • Criquet, S., S. Tagger, G. Vogt, G. Iacazio, and J. Le Petit. 1999. Laccase activity of forest litter. Soil Biology and Biochemistry 31 (9):1239–44. doi: 10.1016/S0038-0717(99)00038-3.
  • Cycoń, M., A. Mrozik, and Z. Piotrowska-Seget. 2017. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 172:52–71. doi: 10.1016/j.chemosphere.2016.12.129.
  • Cycon, M., M. Wojcik, and Z. Piotrowska-Seget. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76:494–501. doi: 10.1016/j.chemosphere.2009.03.023.
  • Damalas, C. A., and I. G. Eleftherohorinos. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8 (5):1402–19. doi: 10.3390/ijerph8051402.
  • Defo, M. A., T. Njine, M. Nola, and F. S. Beboua. 2011. Microcosm study of the long term effect of endosulfan on enzyme and microbial activities on two agricultural soils of Yaounde-Cameroon. African Journal of Agricultural Research 6 (9):2039–50.
  • Dick, W. A., L. Cheng, and P. Wang. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry 32 (13):1915–9. doi: 10.1016/S0038-0717(00)00166-8.
  • Eivazi, F., and M. A. Tabatabai. 1977. Phosphatase in soils. Soil Biology and Biochemistry 9 (3):167–72. doi: 10.1016/0038-0717(77)90070-0.
  • Ellert, B. H., M. J. Clapperton, and D. W. Anderson. 1997. An ecosystem perspective of soil quality. In Soil quality for crop production and ecosystem health, ed. E. G. Gregorich and M. R. Carter, 115–141. Amsterdam: Elsevier.
  • Fragoeiro, S. 2005. Use of fungi in bioremediation of pesticides. Ph.D. Thesis, Cranfield University, Bedford.
  • Fragoeiro, S., and N. Magan. 2008. Impact of T. versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. International Biodeterioration & Biodegradation 62 (4):376–83. doi: 10.1016/j.ibiod.2008.03.003.
  • Garcia, C., and T. Hernandez. 1997. Biological and biochemical indicators in derelict soils subject to erosion. Soil Biology and Biochemistry 29:171–7.
  • George, A. 2005. Isolation, screening and selection of efficient chlorpyriphos degrading microorganisms, M.Sc. diss., College of Agriculture, Dharwad, University of Agricultural Sciences, Indian, 121 p.
  • Gianfreda, L., and M. Rao. 2004. Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme and Microbial Technology 35 (4):339–54. doi: 10.1016/j.enzmictec.2004.05.006.
  • Gilman, J. C. 1957. A manual of soil fungi, 2nd ed. Iowa City, IA: The Iowa State College Press.
  • Girial, P. K., M. Sahab, M. P. Halderb, and D. Mukherjeeb. 2011. Effect of pesticides on microbial transformation of sulphur in soil. International Journal of Plant, Animal and Environmental Sciences 1 (2):115–21.
  • Gouma, S. 2009. Biodegradation of mixtures of pesticides by bacteria and white rot fungi. PhD Thesis, Cranfield University School of Health. 191p.
  • Grossbard, E. 1976. Effects on the soil microflora. In Herbicides: Physiology; biochemistry; ecology, ed. L. J. Audus, vol 2, 99–148. London: Academic Press.
  • Harsh, N. S. K., and B. M. Ojha. 2000. A possible pretreatment for seeds of tropical tree species. Seed Science and Technology 28:513–6.
  • Hindumathy, C. K., and V. Gayathri. 2013. Effect of pesticide (chlorpyrifos) on soil microbial flora and pesticide degradation by strains isolated from contaminated soil. Journal of Bioremediation and Biodegradation 4:178.
  • Hussain, S., M. Arshad, M. Saleem, and Z. A. Zahir. 2007. Screening of soil fungi for in vitro degradation of endosulfan. World Journal of Microbiology and Biotechnology 23 (7):939–45. doi: 10.1007/s11274-006-9317-z.
  • Jackson, M. L. 1967. Soil chemical analysis. New Delhi, India: Prentice Hall of India Pvt. Ltd.
  • Jayaraman, P., T. N. Kumar, P. Maheswaran, E. Sagadevan, and P. Arumugam. 2012. In vitro studies on biodegradation of chlorpyrifos by Trichoderma viride and T. harzianum. Journal of Pure and Applied Microbiology 6 (3):1–16.
  • Johnsen, K., C. Jacobsen, V. Torsvik, and J. Sørensen. 2001. Pesticide effects on bacterial diversity in agricultural soils-a review. Biology and Fertility of Soils 33 (6):443. doi: 10.1007/s003740100351.
  • Kalyani, S. S., Sharma, J. Dureja, P. Singh, and S. Lata. 2010. Influence of endosulfan on microbial biomass and soil enzymatic activities of a tropical alfisol. Bulletin of Environmental Contamination and Toxicology 84:351–6.
  • Kamei, I., K. Takagi, and R. Kondo. 2011. Degradation of endosulfan and endosulfan sulfate by white-rot fungus T. hirsuta. Journal of Wood Science 57 (4):317–22. doi: 10.1007/s10086-011-1176-z.
  • Kullman, S. W., and F. Matsumura. 1996. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Applied and Environmental Microbiology 62:593–600.
  • Kwon, G. S., J. E. Kim, T. K. Kim, H. Y. Sohn, S. C. Koh, K. S. Shin, and D. G. Kim. 2002. Klehsiella pneumonia KF-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS Microbiology Letters 215 (2):255–9. doi: 10.1111/j.1574-6968.2002.tb11399.x.
  • Lal, N., and R. Yadav. 2000. Effect of endosulfan on activity and extracellular production of phosphatase by Aspergillus fumigantus. Indian Journal of Agricultural Science 70 (9):627–9.
  • Malkomes, H. P., and B. Wohler. 1983. Testing and evaluating some methods to investigate soil effects of environmental chemicals on soil microorganisms. Ecotoxicology and Environmental Safety 7 (3):284–94. doi: 10.1016/0147-6513(83)90073-8.
  • Martens, R. 1976. Degradation of (8-9, 14C) endosulfan by soil microorganisms. Applied and Environmental Microbiology 31 (6):853–8.
  • Naumann, K. 1970. Dynamics of the soil microflora following application of insecticides.Field trials on the effects of methyl parathion on the bacterial and actinomycetes population of soil. Zentbl. Bakt. Parasitkde Abt 124:743.
  • Nyakundi, W. O., G. Magoma, J. Ochora, and A. B. Nyende. 2011. Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in Rift Valley and Central Kenya. Journal of Applied Technology in Environmental Sanitation 1 (2):107–24.
  • Ojha, B. M. 2000. Studies on biological control of root diseases caused by Fusarium species in forest nurseries. Ph.D. Thesis, G.D.D. University, MP, India, 117 p.
  • Pandey, S., and D. K. Singh. 2004. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55 (2):197–205. doi: 10.1016/j.chemosphere.2003.10.014.
  • Peter, L., A. Gajendiran, D. Mani, S. Nagaraj, and J. Abraham. 2015. Mineralization of malathion by Fusarium oxysporum strain JASA1 isolated from sugarcane fields. Environmental Progress & Sustainable Energy 34 (1):112–6. doi: 10.1002/ep.11970.
  • Reddy, C., and Z. Mathew. 2001. Bioremediation potential of white rot fungi. In Fungi in bioremediation, ed. G. Gadd, 52–78. Cambridge, UK: Cambridge University Press.
  • Reddy, G. V. B., and M. H. Gold. 2000. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146 (2):405–13.
  • Siddique, T., B. C. Okeke, M. Arshad, and W. T. Frankenberger. 2003a. Enrichment and isolation of endosulfan degrading microorganisms. Journal of Environmental Quality 32 (1):47–54.
  • Siddique, T., B. C. Okeke, M. Arshad, and W. T. Frankenberger. 2003b. Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species. Journal of Agricultural and Food Chemistry 51 (27):8015–9. doi: 10.1021/jf030503z.
  • Silva, M. H. 2007. Endosulfan risk characterization document. Medical toxicology and worker health and safety branches department of pesticide regulation. California environmental protection. www.cdpr.ca.gov/docs/emon/pubs/tac/…/endosulfan/endosulfan_doc.pdf
  • Singh, B. K., A. Walker, J. A. W. Morgan, and D. J. Wright. 2003. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Applied and Environmental Microbiology 69 (9):5198–206.
  • Singh, P. and Alka. 1998. Effect of pesticides on soil microorganisms. Paper presented at the 39th AMI Conference, Jaipur, December 5–7, 190 p.
  • Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcourt, R. J. Russel, and J. G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Applied and Environmental Microbiology 66 (7):2822–8. doi: 10.1128/AEM.66.7.2822-2828.2000.
  • Tabatabai, M. A. 1982. Soil enzymes. In Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy No. 9, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 903–48. Madison, WI: ASA and SSSA.
  • Tien, M., and T. K. Kirk. 1984. Lignin degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H202-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America 81 (8):2280–4. doi: 10.1073/pnas.81.8.2280.
  • Tortella, G. R., O. Rubilar, M. Cea, C. Wulff, O. Martínez, and M. C. Diez. 2010. Biostimulation of agricultural biobeds with npk fertilizer on chlorpyrifos degradation to avoid soil and water contamination. Journal of Soil Science and Plant Nutrition 10 (4):464–75. doi: 10.4067/S0718-95162010000200007.
  • US EPA. 2002. Reregistration Eligibility Decision for Endosulfan. EPA, 738-R-02-013. Pollution, Pesticides and Toxic Substances (7508C), United States Environmental Protection Agency. http://www.epa.gov/oppsrrd1/REDs/endosulfan_red.pdf
  • Veignie, E., C. Rafin, P. Woisel, and F. Cazier. 2004. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environmental Pollution 129 (1):1–4. doi: 10.1016/j.envpol.2003.11.007.
  • Vyas, B. R. M., J. Volc, and V. Sasek. 1994. Effects of temperature on the production of manganese peroxidase and lignin peroxidase by Phanerochaete chrysospoffum. Folia Microbiologica 39 (1):19–22. doi: 10.1007/BF02814523.
  • Zhao, L., Y. Tang, Q. Li, F. Li, X. Shao, and Y. Wang. 2011. Studies on Degradation of the Pesticide of Chlorpyrifos by Phanerochaete chrysosporium. (iCBBE). Paper presented at the 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, May 10–12, 5119–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.