224
Views
1
CrossRef citations to date
0
Altmetric
Articles

Minimal medium optimization for soluble sulfate removal by tailor-made sulfate reducing bacterial consortium

, , &
Pages 251-264 | Published online: 26 Aug 2020

References

  • Al-Zuhair, S., M. H. El-Naas, and H. Al-Hassani. 2008. Sulfate inhibition effect on sulfate reducing bacteria. Journal of Biochemical Technology 1:39–44.
  • Amabye, T. G. 2015. Effect of food processing industries effluents on the environment: A case study of MOHA Mekelle Bottling Company, Tigray. Industrial Chemistry 01 (02):110. doi: 10.4172/2469-9764.1000110.
  • Benedetto, J. S., S. K. De Almeida, H. A. Gomes, R. F. Vazoller, and A. C. Q. Ladeira. 2005. Monitoring of sulfate-reducing bacteria in acid water from uranium mines. Minerals Engineering 18 (13–14):1341–3. doi: 10.1016/j.mineng.2005.08.012.
  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2007. Time series analysis, forecasting and control. 3rd ed. London: Pearson.
  • Costa, M., A. L. Goldberger, and C. K. Peng. 2002. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters 89 (6):068102. doi: 10.1103/PhysRevLett.89.068102.
  • Darbi, A., T. Viraraghavan, Y. Jin, L. Braul, and D. Corkal. 2003. Sulfate removal from water. Water Quality Research Journal 38 (1):169–82. doi: 10.2166/wqrj.2003.011.
  • Eckmann, J. P., and D. Ruelle. 1985. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics 57 (3):617–56. doi: 10.1103/RevModPhys.57.617.
  • Halder, N., M. Gogoi, J. Sharmin, M. Gupta, S. Banerjee, T. Biswas, B. K. Agarwala, L. M. Gantayet, M. Sudarshan, I. Mukherjee, et al. 2020. Microbial consortium–based conversion of dairy effluent into biofertilizer. Journal of Hazardous, Toxic, and Radioactive Waste 24 (1):04019039. doi: 10.1061/(ASCE)HZ.2153-5515.0000486.
  • Hao, T., P. Xiang, H. R. Mackey, K. Chi, H. Lu, H. Chui, M. C. M. Loosdrecht, and G. Chen. 2014. A review of biological sulfate conversions in wastewater treatment. Water Research 65:1–21. doi: 10.1016/j.watres.2014.06.043.
  • Horn, H., and S. Lackner. 2014. Modeling of biofilm systems: A review. Advances in Biochemical Engineering/Biotechnology 146:53–76. doi: 10.1007/10_2014_275.
  • Hulshoff Pol, L. W., P. N. L. Lens, A. J. M. Stams, and G. Lettinga. 1998. Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9 (3–4):213–24. doi: 10.1023/A:1008307929134.
  • Ismail, M., N. Yahaya, A. A. Baker, and N. M. Noor. 2014. Cultivation of sulphate reducing bacteria in different media. Malaysian Journal of Civil Engineering 26 (3):456–65.
  • Jain, P., M. Sharma, P. Dureja, P. M. Sarma, and B. Lal. 2017. Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere 166:96–108. doi: 10.1016/j.chemosphere.2016.09.081.
  • Janssen, A. J. H., H. Dijkman, and G. Janssen. 2000. Novel biological processes for the removal of H2S and S02 from gas streams. In Environmental technologies to treat sulfur pollution – principles and engineering, ed. P. Lens and L. H. Pol, 265–80. London: International Water Association.
  • Jarque, C. M., and A. K. Bera. 1980. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6 (3):255–9. doi: 10.1016/0165-1765(80)90024-5.
  • Jimoh, A. A., and J. Lin. 2020. Bioremediation of contaminated diesel and motor oil through the optimization of biosurfactant produced by Paenibacillus sp. D9 on waste canola oil. Bioremediation Journal 24 (1):21–40. doi: 10.1080/10889868.2020.1721425.
  • Jolliffe, I. T. 2002. Principal component analysis. 2nd ed. New York: Springer.
  • Kantz, H., and T. Schreiber. 2004. Nonlinear time series analysis. 2nd ed. Cambridge: Cambridge University Press.
  • Kieu, H. T. Q., E. Muller, and H. Horn. 2011. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Research 45 (13):3863–70. doi: 10.1016/j.watres.2011.04.043.
  • Kim, S. D., J. J. Kilbane, and D. K. Cha. 1999. Prevention of acid mine drainage by sulfate reducing bacteria: Organic substrate addition to mine waste piles. Environmental Engineering Science 16 (2):139–45. doi: 10.1089/ees.1999.16.139.
  • Kinnunen, P., H. Kyllonen, T. Kaartinen, J. Makinen, J. Heikkinen, and V. Miettinen. 2018. Sulphate removal from mine water with chemical, biological and membrane technologies. Water Science and Technology 2017 (1):194–205. doi: 10.2166/wst.2018.102.
  • Martin, R., N. Soberon, M. Vaneechoutte, A. B. Florez, F. Vazquez, and J. E. Suarez. 2008. Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. International Microbiology : The Official Journal of the Spanish Society for Microbiology 11 (4):261–6. doi: 10.2436/20.1501.01.70.
  • Mukherjee, I., A. Giri, C. Sen, R. Sebait, and P. Barat. 2016. Quantitative characterization of sulphate reduction data obtained from a biofilm based bioreactor—Part I. In Life science: Recent innovations and research. 1st ed., ed. S. R. Chaudhuri, 81–102. New Delhi: International Research Publication House.
  • Muyzer, G., and A. J. M. Stams. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews. Microbiology 6 (6):441–54. doi: 10.1038/nrmicro1892.
  • Nasipuri, P., G. G. Pandit, A. R. Thakur, and S. R. Chaudhuri. 2010a. Comparative study of soluble sulphate reduction by bacterial consortia from varied regions of India. American Journal of Environmental Sciences 6:45–6. doi: 10.3844/ajessp.2010.152.158.
  • Nasipuri, P., G. G. Pandit, A. R. Thakur, and S. R. Chaudhuri. 2010b. Microbial consortia from taptapani hot water springs for mining effluent treatment. American Journal of Microbiology 1 (2):23–9. doi: 10.3844/ajmsp.2010.23.29.
  • Nasipuri, P. 2010. Isolation and characterization of efficient sulfate reducing bacterial consortia from different environmental sites. PhD diss., West Bengal University of Technology.
  • Noyola, A., J. M. Morgan-Sagastume, and J. E. López-Hernández. 2006. Treatment of biogas produced in anaerobic reactors for domestic wastewater: Odor control and energy/resource recovery. Reviews in Environmental Science and Bio/Technology 5 (1):93–114. doi: 10.1007/s11157-005-2754-6.
  • Ramachandran, V. 2012. Removal, control and management of total dissolved solids from process effluent streams in the non-ferrous metallurgical industry–A review. In Proceedings of the 51st Conference of Metallurgists, ed. C. Q. Jia, 101–17. Ontario, Canada.
  • Ray Chaudhuri, S., L. M. Gantayet, and A. R. Thakur. 2020. Formulation of bacterial consortium for bioremediation of petrochemical wastewater. Indian Patent Application 202031011766, filed March 18, 2020.
  • Ray Chaudhuri, S., I. Mukherjee, D. Datta, C. Chanda, G. P. Krishnan, S. Bhatt, P. Datta, S. Bhushan, S. Ghosh, P. Bhattacharya, et al. 2016. Developing tailor-made microbial consortium for effluent remediation. In Nuclear material performance, ed. R. O. A. Rahman and H. E.-D. M. Saleh, 17–35. London: Intech. doi: 10.5772/62594.
  • Ray Chaudhuri, S., and A. R. Thakur. 2013. Self-sustained microbial detoxification of soluble sulfate from environmental effluent. US Patent 8,398,856B2, filed July 28, 2011, and issued March 19, 2013.
  • Reinsel, M. 2015. Sulfate removal technologies: A review. Water Online. https://www.wateronline.com/doc/sulfate-removal-technologies-areview-0001.
  • Reinsel, M. A. 1999. A new process for sulfate removal from industrial waters. In 16th Annual National Meeting of the American Society for Surface Mining and Reclamation, ed. S. A. Bengson and D. M. Bland, 546–50. Tucson, AZ: Arizona Geological Survey. doi: 10.21000/JASMR99010546.
  • Rittmann, B. E., and P. E. McCarty. 2012. Biofilm kinetics. In Environmental biotechnology: Principles and applications, ed. G. Tchobanoglous, 207–60. Noida: Tata McGraw Hill Education Private Limited.
  • Sabumon, P. C. 2016. Perspectives on biological treatment of tannery effluent. Advances in Recycling & Waste Management 1 (1):1–10. doi: 10.4172/arwm.1000104.
  • Saha, A., S. Bhushan, P. Mukherjee, C. Chanda, M. Bhaumik, M. Ghosh, J. Sharmin, P. Datta, S. Banerjee, P. Barat, et al. 2018. Simultaneous sequestration of nitrate and phosphate from wastewater using a tailor‐made bacterial consortium in biofilm bioreactor. Journal of Chemical Technology & Biotechnology 93 (5):1279–89. doi: 10.1002/jctb.5487.
  • Sharma, S. 2012. Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science 2 (2):202–13.
  • Silva, A. J., M. B. Varesche, E. Foresti, and M. Zaiat, 2002. Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochemistry 37 (9):927–35. doi: 10.1016/S0032-9592(01)00297-7.
  • Todar, K. 2007. Todar’s online textbook of bacteriology. http://textbookofbacteriology.net/nutgro.html.
  • Trulear, M. G., and W. G. Characklis. 1982. Dynamics of biofilm processes. Journal of the Water Pollution Control Federation 54:1288–301. doi: 10.2307/25041684.
  • Vallero, M. V. G. 2003. Sulfate reducing processes at extreme salinity and temperature: Extending its application window. PhD diss., Wageningen University.
  • Van den Brand, T. P. H., K. Roest, G. H. Chen, D. Brdjanovic, and M. C. M. Van Loosdrecht. 2015. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World Journal of Microbiology & Biotechnology 31 (11):1675–81. doi: 10.1007/s11274-015-1935-x.
  • Van Loosdrecht, M. C. M., and S. J. Heijnen. 1993. Biofilm bioreactors for waste-water treatment. Trends in Biotechnology 11 (4):117–21. doi: 10.1016/0167-7799(93)90085-N.
  • Wang, H., F. Chen, S. Mu, D. Zhang, X. Pan, D.-J. Lee, and J.-S. Chang. 2013. Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation-precipitation. Bioresource Technology 146:799–802. doi: 10.1016/j.biortech.2013.08.002.
  • Wegkamp, A., B. Teusink, W. M. de Vos, and E. J. Smid. 2010. Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied Microbiology 50 (1):57–64. doi: 10.1111/j.1472-765X.2009.02752.x.
  • Xu, Y.-N., and Y. Chen. 2020. Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology : A Journal of the International Association on Water Pollution Research 81 (9):1797–827. doi: 10.2166/wst.2020.227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.