388
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Beneficial bacteria associated with Mimosa pudica and potential to sustain plant growth-promoting traits under heavy metals stress

ORCID Icon, , &
Pages 1-21 | Published online: 02 Dec 2020

References

  • Affandi, F. A., and M. Y. Ishak. 2018. Heavy metal concentrations in tin mine effluents in Kepayang River, Perak, Malaysia. Journal of Physical Science 29 (3):81–6. doi: 10.21315/jps2018.29.s3.10.
  • Ahmad, I., M. J. Akhtar, Z. A. Zahir, M. Naveed, B. Mitter, and A. Sessitsch. 2014. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environmental Science and Pollution Research International 21 (18):11054–65. doi: 10.1007/s11356-014-3010-9.
  • Ariffin, K. S. 2009. Sediment hosted primary tin deposit associated with biotite granite and fault zone at Gunung Paku, Klian Intan, Upper Perak, Malaysia. Resource Geology 59 (3):282–94. doi: 10.1111/j.1751-3928.2009.00096.x.
  • Arora, N. K., and M. Verma. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7 (6):1–9. doi: 10.1007/s13205-017-1008-y.
  • Ashraf, M., Aqeel, M. J. Maah, and I. Yusoff. 2011. Analysis of physio-chemical parameters and distribution of heavy metals in soil and water of ex-mining area of Bestari Jaya, Peninsular Malaysia. Asian Journal of Chemistry 23 (8):3493–9.
  • Ashraf, M. A., I. Hussain, R. Rasheed, M. Iqbal, M. Riaz, and M. S. Arif. 2017. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management 198 (Pt 1):132–43. doi: 10.1016/j.jenvman.2017.04.060.
  • Barbosa Felestrino, É., R. de Almeida Barbosa Assis, C. G. de Carvalho Lemes, I. Ferreira Cordeiro, N. Peixoto Fonseca, M. M. Villa, I. Tabuso Vieira, L. H. Yoshino Kamino, F. Fonseca do Carmo, and L. M. Moreira. 2017. Alcaligenes Faecalis associated with Mimosa Calodendron Rizhosphere assist plant survival in arsenic rich soils. Journal of Soil Science and Plant Nutrition 17 (4):1102–15. doi: 10.4067/S0718-95162017000400019.
  • El Baz, S., M. Baz, M. Barakate, L. Hassani, A. E. Gharmali, and B. Imziln. 2015. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. TheScientificWorldJournal 2015:761834. doi: 10.1155/2015/761834.
  • Carlos, M. H. J., P. V. Y. Stefani, A. M. Janette, M. S. S. Melani, and P. O. Gabriela. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research 188-189:53–61. doi: 10.1016/j.micres.2016.05.001.
  • CHEMIASOF. 2011. Guide to preparation of stock standard solutions 1st Ed. May. https://cdn.comu.edu.tr/cms/muhendislik.cevre/files/80-3-standard-solutions.pdf.
  • Compant, S., C. Clément, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42 (5):669–78. doi: 10.1016/j.soilbio.2009.11.024.
  • Das, S., J. S. Jean, M. L. Chou, J. Rathod, and C. C. Liu. 2016. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the Rhizosphere of Oryza Sativa L.: Implications for mitigation of arsenic contamination in paddies. Journal of Hazardous Materials 302:10–8. doi: 10.1016/j.jhazmat.2015.09.044.
  • Dutta, J., and D. Thakur. 2017. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS ONE 12 (8):e0182302. doi: 10.1371/journal.pone.0182302.
  • Enebe, M. C., and O. O. Babalola. 2018. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology and Biotechnology 102 (18):7821–35. doi: 10.1007/s00253-018-9214-z.
  • Etesami, H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety 147:175–91. doi: 10.1016/j.ecoenv.2017.08.032.
  • Etesami, H., and D. K. Maheshwari. 2018. Use of Plant Growth Promoting Rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety 156:225–46. doi: 10.1016/j.ecoenv.2018.03.013.
  • Farh, M. E. A., Y. J. Kim, J. Sukweenadhi, P. Singh, and D. C. Yang. 2017. Aluminium resistant, plant growth promoting bacteria induce overexpression of aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiological Research 200:45–52. doi: 10.1016/j.micres.2017.04.004.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications 2012. doi: 10.6064/2012/963401.
  • Gordon, S. A., and R. P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26 (1):192–5. doi: 10.1104/pp.26.1.192.
  • Goswami, D., P. Dhandhukia, P. Patel, and J. N. Thakker. 2014. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research 169 (1):66–75. doi: 10.1016/j.micres.2013.07.004.
  • Govarthanan, M., R. Mythili, T. Selvankumar, S. Kamala-Kannan, A. Rajasekar, and Y. C. Chang. 2016. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6 (2):1–7.
  • Gupta, P., R. Rani, A. Chandra, and V. Kumar. 2018. Potential applications of Pseudomonas sp. (Strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Scientific Reports 8 (1):1–10. doi: 10.1038/s41598-018-23322-5.
  • Hesse, E., S. O'Brien, N. Tromas, F. Bayer, A. M. Luján, E. M. Veen, D. J. Hodgson, and A. Buckling. 2018. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecology Letters 21 (1):117–27. doi: 10.1111/ele.12878.
  • Hou, D., K. Wang, T. Liu, H. Wang, Z. Lin, J. Qian, L. Lu, and S. Tian. 2017. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environmental Science & Technology 51 (10):5675–84. doi: 10.1021/acs.est.6b06531.
  • Islam, F., T. Yasmeen, Q. Ali, M. Mubin, S. Ali, M. S. Arif, S. Hussain, M. Riaz, and F. Abbas. 2016. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environmental Science and Pollution Research International 23 (1):220–33. doi: 10.1007/s11356-015-5354-1.
  • Iwata, K., A. Azlan, H. Yamakawa, and T. Omori. 2010. Ammonia accumulation in culture broth by the novel nitrogen-fixing bacterium, Lysobacter sp. E4. Journal of Bioscience and Bioengineering 110 (4):415–8. doi: 10.1016/j.jbiosc.2010.05.006.
  • Jian, L., X. Bai, H. Zhang, X. Song, and Z. Li. 2019. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. Peerj. 2019 (5):1–20.
  • Jiang, B., A. Adebayo, J. Jia, Y. Xing, S. Deng, L. Guo, Y. Liang, and D. Zhang. 2019. Impacts of heavy metals and soil properties at a Nigerian E-waste site on soil microbial community. Journal of Hazardous Materials 362 (March 2018):187–95. doi: 10.1016/j.jhazmat.2018.08.060.
  • Ju, W., L. Liu, L. Fang, Y. Cui, C. Duan, and H. Wu. 2019. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety 167 (May 2018):218–26. doi: 10.1016/j.ecoenv.2018.10.016.
  • Kandel, S. L., A. Firrincieli, P. M. Joubert, P. A. Okubara, N. D. Leston, K. M. McGeorge, G. S. Mugnozza, A. Harfouche, S. H. Kim, and S. L. Doty. 2017. An in vitro study of bio-control and plant growth promotion potential of salicaceae endophytes. Frontiers in Microbiology 8 (MAR):1–16. doi: 10.3389/fmicb.2017.00386.
  • Karaca, O., C. Cameselle, and K. R. Reddy. 2018. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Bio/Technology 17 (1):205–28. doi: 10.1007/s11157-017-9453-y.
  • Karthik, C., and P. I. Arulselvi. 2017. Biotoxic effect of chromium (VI) on plant growth-promoting traits of novel Cellulosimicrobium funkei strain AR8 isolated from Phaseolus vulgaris rhizosphere. Geomicrobiology Journal 34 (5):1–442. doi: 10.1080/01490451.2016.1219429.
  • Khan, A. R., I. Ullah, A. L. Khan, G. S. Park, M. Waqas, S. J. Hong, B. K. Jung, Y. Kwak, I. J. Lee, and J. H. Shin. 2015. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environmental Science and Pollution Research International 22 (18):14032–42. doi: 10.1007/s11356-015-4647-8.
  • Khan, M. U., A. Sessitsch, M. Harris, K. Fatima, A. Imran, M. Arslan, G. Shabir, Q. M. Khan, and M. Afzal. 2015. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science 5 (January):755–10. doi: 10.3389/fpls.2014.00755.
  • Klonowska, A., C. Chaintreuil, P. Tisseyre, L. Miché, R. Melkonian, M. Ducousso, G. Laguerre, B. Brunel, and L. Moulin. 2012. Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils. FEMS Microbiology Ecology 81 (3):618–35. doi: 10.1111/j.1574-6941.2012.01393.x.
  • Kong, Z., and B. R. Glick. 2017. The role of plant growth-promoting bacteria in metal phytoremediation. Advances in Microbial Physiology 71 (July):97–132. doi: 10.1016/bs.ampbs.2017.04.001.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary Genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6):1547–9. doi: 10.1093/molbev/msy096.
  • Kuri, S., G. Prakasha, V. Jith, and S. S. S. Harsha Kumar. 2018. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. International Journal of Current Microbiology and Applied Sciences 7 (03):1673–97. doi: 10.20546/ijcmas.2018.703.200.
  • Kutty, A. A., and S. A. Al-Mahaqeri. 2016. An investigation of the levels and distribution of selected heavy metals in sediments and plant species within the vicinity of ex-iron mine in Bukit Besi. Journal of Chemistry 2016:1–12. doi: 10.1155/2016/2096147.
  • Li, C., K. Zhou, W. Qin, C. Tian, M. Qi, X. Yan, and W. Han. 2019. Soil and sediment contamination: An international a review on heavy metals contamination in soil: Effects, sources, and remediation techniques a review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal 28 (4):380–94. doi: 10.1080/15320383.2019.1592108.
  • Ma, Y., M. Rajkumar, C. Zhang, and H. Freitas. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174:14–25. doi: 10.1016/j.jenvman.2016.02.047.
  • Manzoor, M.,. R. Abid, B. Rathinasabapathi, L. M. De Oliveira, E. da Silva, F. Deng, C. Rensing, M. Arshad, I. Gul, P. Xiang, et al. 2019. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. The Science of the Total Environment 660:18–24. doi: 10.1016/j.scitotenv.2019.01.013.
  • Marzan, L. W., M. Hossain, S. A. Mina, Y. Akter, and A. M. M. A. Chowdhury. 2017. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong City, Bangladesh: Bioremediation viewpoint. The Egyptian Journal of Aquatic Research 43 (1):65–74. doi: 10.1016/j.ejar.2016.11.002.
  • Mehta, S., and C. S. Nautiyal. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43 (1):51–6. doi: 10.1007/s002840010259.
  • Mishra, J., R. Singh, and N. K. Arora. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology 8 (SEP):1–7. doi: 10.3389/fmicb.2017.01706.
  • Mosa, K. A., I. Saadoun, K. Kumar, M. Helmy, and O. P. Dhankher. 2016. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science 7 (March):1–14. doi: 10.3389/fpls.2016.00303.
  • Motsara, M. R., and R. N. Roy. 2008. Guide to laboratory establishment for plant nutrient analysis. Fao Fertilizer and Plant Nutrition Bulletin 19:22–37.
  • Ndeddy Aka, R. J., and O. O. Babalola. 2017. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediation Journal 21 (1):1–19. doi: 10.1080/10889868.2017.1282933.
  • Ojuederie, O. B., and O. O. Babalola. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health 14 (12):1504. doi: 10.3390/ijerph14121504.
  • Paredes-Páliz, K. I., M. A. Caviedes, B. Doukkali, E. Mateos-Naranjo, I. D. Rodríguez-Llorente, and E. Pajuelo. 2016. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environmental Science and Pollution Research International 23 (19):19825–37. doi: 10.1007/s11356-016-7184-1.
  • Parmar, P., and S. S. Sindhu. 2019. The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiology Journal 36 (2):130–6. doi: 10.1080/01490451.2018.1514442.
  • Penrose, D. M., and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum 118 (1):10–5. doi: 10.1034/j.1399-3054.2003.00086.x.
  • Rahman, Z., and V. P. Singh. 2019. The relative impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr) (VI), Mercury (Hg), and Lead (Pb)) on the total environment: An overview.
  • Ren, X. M., S. J. Guo, W. Tian, Y. Chen, H. Han, E. Chen, B. L. Li, Y. Y. Li, and Z. J. Chen. 2019. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology 10 (June):1455–12. doi: 10.3389/fmicb.2019.01455.
  • Rizvi, A., and M. S. Khan. 2017. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–52. doi: 10.1016/j.chemosphere.2017.07.088.
  • Saravanakumar, D., and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology 102 (5):1283–92. doi: 10.1111/j.1365-2672.2006.03179.x.
  • Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1):47–56. doi: 10.1016/0003-2697(87)90612-9.
  • Singh, S., V. Kumar, G. Kaur, S. Datta, D. Singh, B. Koul, H. Singh, and J. Singh. 2019. Biocatalysis and agricultural biotechnology plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatalysis and Agricultural Biotechnology 17 (December 2018):665–71. doi: 10.1016/j.bcab.2019.01.035.
  • Sun, W., Z. Xiong, L. Chu, W. Li, M. A. Soares, J. F. White, and H. Li. 2019. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71). Journal of Hazardous Materials 370 (December 2017):225–31. doi: 10.1016/j.jhazmat.2018.02.003.
  • Swapnil, I. G., Anubha, and S. and S. Sharad. 2016. Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. 1000–12.
  • Syed, S., and P. Chinthala. 2015. Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica 2015:319760–8. doi: 10.1155/2015/319760.
  • Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. Heavy metal toxicity and the environment. EXS 101:133–64.
  • Tirry, N., N. Tahri Joutey, H. Sayel, A. Kouchou, W. Bahafid, M. Asri, and N. E. Ghachtouli. 2018. Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal, Genetic Engineering & Biotechnology 16 (2):613–9. doi: 10.1016/j.jgeb.2018.06.004.
  • Tiwari, S., and C. Lata. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science 9 (April):1–12. doi: 10.3389/fpls.2018.00452.
  • Upadhyay, M. K., P. Yadav, A. Shukla, and S. Srivastava. 2018. Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Frontiers in Environmental Science 6 (May):1–11. doi: 10.3389/fenvs.2018.00024.
  • Xie, Y., J. Fan, W. Zhu, E. Amombo, Y. Lou, L. Chen, and J. Fu. 2016. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in Plant Science 7 (May):1–12. doi: 10.3389/fpls.2016.00755.
  • Yin, K., Q. Wang, M. Lv, and L. Chen. 2019. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal 360 (November 2018):1553–63. doi: 10.1016/j.cej.2018.10.226.
  • Yu, X., Y. Li, C. Zhang, H. Liu, J. Liu, W. Zheng, and X. Kang. 2014. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One. 9 (9):1–8.
  • De Zelicourt, A., M. Al-Yousif, and H. Hirt. 2013. Rhizosphere microbes as essential partners for plant stress tolerance. Molecular Plant 6 (2):242–5. doi: 10.1093/mp/sst028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.