210
Views
0
CrossRef citations to date
0
Altmetric
Notes

Phycoremediation of water of Ellenga beel polluted with paper mill effluent using Chlorella ellipsoidea and Desmodesmus opoliensis

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 93-103 | Published online: 29 Oct 2021

References

  • Ali, M., and T. R. Sreekrishnan. 2001. Aquatic toxicity from pulp and paper mill effluents: A review. Advances in Environmental Research 5 (2):175–96. doi: 10.1016/S1093-0191(00)00055-1.
  • American Public Health Association (APHA). 2017. Standard method for examination of water and wastewater. 23rd ed. Washington: APHA.
  • Baghour, M. 2019. Algal degradation of organic pollutants. In Handbook of ecomaterials, ed. L. Martínez, O. Kharissova, and B. Kharisov. Cham: Springer.
  • Baldiris-Navarro, I., J. Sanchez-Aponte, A. Delgado González, A. R. Jimenez, and M. Acevedo-Morantes. 2018. Removal and biodegradation of phenol by the freshwater microalgae Chlorella vulgaris methods, 6, 7. Contemporary Engineering Sciences 11 (40):1961–70. doi: 10.12988/ces.2018.84201.
  • Ballén-Segura, M., L. H. Rodríguez, D. Parra Ospina, A. Vega Bolaños, and K. Pérez. 2016. Using Scenedesmus sp. for the phycoremediation of tannery wastewater. Tecciencia 11 (21):69–75. doi: 10.18180/tecciencia.2016.21.11.
  • Bansal, A., O. Shinde, and S. Sarkar. 2018. Industrial wastewater treatment using wastewater phycoremediation technologies and co-production of value added products. Journal of Bioremediation & Biodegradation 09 (01):10. doi: 10.4172/2155-6199.1000428.
  • Bark, M. 2012. Cultivation of eleven different species of freshwater microalgae using simulated flue gas mimicking effluents from paper mills as carbon source. Master’s thesis., Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Chabukdhara, M., M. Gogoi, and S. K. Gupta. 2019. Potential and feasibility of the micro algal system in removal of pharmaceutical compounds from wastewater. In Application of microalgae in wastewater treatment, ed. S. Gupta and F. Bux. Cham: Springer.
  • Das, S., A. Bora, H. K. Gogoi, S. Manderia, B. Bailung, J. Rajkonwar, and S. K. Dwivedi. 2018. Effect of growth phase in enhancing PUFA accumulation of few oleaginous freshwater Chlorophyceae species. International Journal of Pharmacy and Biological Sciences 8:642–53.
  • Dean, A. P., M. C. Martin, and D. C. Sigee. 2007. Resolution of codominant phytoplankton species in a eutrophic lake using synchrotron-based Fourier transform infrared spectroscopy. Phycologia 46 (2):151–9. doi: 10.2216/06-27.1.
  • Dutta, P. K., K. Rabaey, Z. Yuan, R. A. Rozendal, and J. Keller. 2010. Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Research 44 (8):2563–71. doi: 10.1016/j.watres.2010.01.008.
  • Duygu, D. Y., A. U. Udoh, T. B. Ozer, A. Akbulut, I. A. Erkaya, K. Yildiz, and D. Guler. 2012. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology 11:3817–24.
  • El-Kassas, H. Y., and L. A. Mohamed. 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research 40 (3):301–8. doi: 10.1016/j.ejar.2014.08.003.
  • Emparan, Q., R. Harun, and M. K. Danquah. 2019. Role of phycoremediation for nutrient removal from wastewaters: A review. Applied Ecology and Environmental Research 17 (1):889–915. doi: 10.15666/aeer/1701_889915.
  • Fazeli, M. S., F. Khosravan, M. Hossini, S. Sathyanarayan, and P. N. Satish. 1998. Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnatake, India. Environmental Geology 34 (4):297–302. doi: 10.1007/s002540050281.
  • Giordano, M., A. Norici, and R. Hell. 2005. Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. The New Phytologist 166 (2):371–82. doi: 10.1111/j.1469-8137.2005.01335.x.
  • Hammed, A. M., S. K. Prajapati, S. Simsek, and H. Simsek. 2016. Growth regime and environmental remediation of microalgae. Algae 31 (3):189–204. doi: 10.4490/algae.2016.31.8.28.
  • Hewitt, L. M., T. G. Kovacs, M. G. Dubé, D. L. MacLatchy, P. H. Martel, M. E. McMaster, M. G. Paice, J. L. Parrott, M. R. Van den Heuvel, and G. J. Van Der Kraak. 2008. Altered reproduction in fish exposed to pulp and paper mill effluents: Roles of individual compounds and mill operating conditions. Environmental Toxicology and Chemistry 27 (3):682–97. doi: 10.1897/07-195.1.
  • Kaur, S. 2011. Morphological molecular and fatty acids characterization of certain microalgae from Assam for their potential as biodisel feedstock. Accessed April 27, 2021. http://hdl.handle.net/10603/115351.
  • Kshirsagar, A. D. 2013. Bioremediation of wastewater by using microalgae: An experimental study. International Journal of Life Science and Pharma Reviews 2:339–46.
  • Kumar, P. K., S. V. Krishna, S. S. Naidu, K. Verma, D. Bhagawan, and V. Himabindu. 2019. Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resources Conversion 2 (2):126–33. doi: 10.1016/j.crcon.2019.06.002.
  • Kumar, R. R., P. H. Rao, V. V. Subramanian, and V. Sivasubramanian. 2014. Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry. Journal of Food Science and Technology 51 (2):322–8. doi: 10.1007/s13197-011-0501-2.
  • Lekshmi, B., R. S. Joseph, A. Jose, S. Abinandan, and S. Shanthakumar. 2015. Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans. Alexandria Engineering Journal 54 (4):1291–6. doi: 10.1016/j.aej.2015.09.013.
  • Lombardi, A. T., A. V. H. Vieira, and L. A. Sartori. 2002. Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). Journal of Phycology 38 (2):332–7. doi: 10.1046/j.1529-8817.2002.00126.x.
  • Luo, L. Z., Y. Shao, S. Luo, F. J. Zeng, and G. M. Tian. 2019. Nutrient removal from piggery wastewater by Desmodesmus sp.CHX1 and its cultivation conditions optimization. Environmental Technology 40 (21):2739–46. doi: 10.1080/09593330.2018.1449903.
  • Michalak, I., M. Mironiuk, and K. Marycz. 2018. A comprehensive analysis of biosorption of metal ions by macro algae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One 13 (10):e0205590–20. doi: 10.1371/journal.pone.0205590.
  • Min, M.,. B. Hu, M. J. Mohr, A. Shi, J. Ding, Y. Sun, Y. Jiang, Z. Fu, R. Griffith, F. Hussain, et al. 2014. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment-A case study. Applied Biochemistry and Biotechnology 172 (3):1390–406. doi: 10.1007/s12010-013-0603-6.
  • Delgadillo-Mirquez, L., F. Lopes, B. Taidi, and D. Pareau. 2016. Nitrogen and Phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports (Amsterdam, Netherlands) 11:18–26. doi: 10.1016/j.btre.2016.04.003.
  • Nayak, J. K., and U. K. Ghosh. 2019. Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production. Biomass and Bioenergy 131:105415. doi: 10.1016/j.biombioe.2019.105415.
  • Olguıin, E. J. 2003. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances 22:81–91.
  • Peng, J., K. Kumar, M. Gross, T. Kunetz, and Z. Wen. 2020. Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environment Research : A Research Publication of the Water Environment Federation 92 (5):766–78. doi: 10.1002/wer.1273.
  • Perales-Vela, H. V., J. M. Peñna-Castro, and R. O. Cañizares-Villanueva. 2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64 (1):1–10. doi: 10.1016/j.chemosphere.2005.11.024.
  • Phukan, M. M. 2014. Biomass and biofuel characterization of some microalgal species of Assam. Accessed April 27, 2021. http://hdl.handle.net/10603/54619 ().
  • Podder, M. S., and C. B. Majumder. 2016. Phycoremediation potential of Botryococcus braunii: Bioremediation and toxicity of as (III) and as (V). Water Conservation Science and Engineering 1 (1):49–68. doi: 10.1007/s41101-016-0003-1.
  • Pongpiacha, S. 2014. FTIR spectra of organic functional group compositions in PM 2.5 collected at Chiang-Mai City, Thailand during the haze episode in March 2012. Journal of Applied Sciences 14 (22):2967–77. doi: 10.3923/jas.2014.2967.2977.
  • Prabakar, D., S. Suvetha K, V. T. Manimudi, T. Mathimani, G. Kumar, E. R. Rene, and A. Pugazhendhi. 2018. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. Journal of Environmental Management 218:165–80. doi: 10.1016/j.jenvman.2018.03.136.
  • Prajapati, S. K., P. Choudhary, A. Malik, and V. K. Vijay. 2014. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresource Technology 167:260–8. doi: 10.1016/j.biortech.2014.06.038.
  • Purkayastha, J., A. Bora, H. K. Gogoi, and L. Singh. 2017. Growth of high oil yielding green alga Chlorella ellipsoidea in diverse autotrophic media, effect on its constituents. Algal Research 21:81–8. doi: 10.1016/j.algal.2016.11.009.
  • Al-Qunaibit, M. H. 2004. A kinetic study of uptake of some cationic entities by the alga Chlorella vulgaris. Chemindix 6:1–12.
  • Raouf Abdel, N., A. A. Al-Homaidan, and I. B. M. Ibraheem. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19 (3):257–75. doi: 10.1016/j.sjbs.2012.04.005.
  • Rendón, L., M. Ramírez, and Y. Vélez. 2015. Microalgas para la industria alimenticia [online]. 1st ed. Medellín: Universidad Pontifica Bolivariana. http://repository.upb.edu.co:8080/jspui/handle/123456789/2306.
  • Saikia, K. M., and P. Lohar. 2012. Structural and physicochemical correlation of algal community of a wetland affected by pulp and paper mill effluents. Global Journal of Science Frontier Research 12:1–11.
  • Sarmah, P., S. Das, H. Sharma, and J. Rout. 2019. Micro algal biomass generation by phycoremediation of sewage water: An integrated approach for production of antioxidant and value added products. Vegetos 32 (4):556–63. doi: 10.1007/s42535-019-00056-x.
  • Schiff, J. A. 1959. Studies on sulfate utilization by Chlorella pyrenoidosa using sulfate-S; the occurrence of S-adenosyl methionine. Plant Physiology 34 (1):73–80. doi: 10.1104/pp.34.1.73.
  • Shabanian, M., M. Hajibeygi, and A. Raeisi. 2020. FTIR characterization of layered double hydroxides and modified layered double hydroxides. In Layered double hydroxide polymer nanocomposites, 77–101. Sawston, UK: Woodhead Publishing.
  • Singh, A. K., N. Sharma, H. Farooqi, M. Z. Abdin, T. Mock, and S. Kumar. 2017. Phycoremediation of municipal wastewater by microalgae to produce biofuel. International Journal of Phytoremediation 19 (9):805–12. doi: 10.1080/15226514.2017.1284758.
  • Singh, N. K., and D. W. Dhar. 2007. Nitrogen and phosphorous scavenging potential in microalgae. Indian Journal of Biotechnology 6:52–6.
  • Sudhakar, K., and M. Premalatha. 2015. Characterization of micro algal biomass through FTIR/TGA/CHN analysis: Application to Scenedesmus sp. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (21):2330–7.
  • Taziki, M., H. Ahmadzadeh, M. A. Murry, and S. R. Lyon. 2016. Nitrate and nitrite removal from wastewater using algae. Current Biotechnology 4 (4):426–40. doi: 10.2174/2211550104666150828193607.
  • Torres, M. A., M. P. Barros, S. C. G. Campos, E. Pinto, S. Rajamani, R. T. Sayre, and P. Colepicolo. 2008. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicology and Environmental Safety 71 (1):1–15. doi: 10.1016/j.ecoenv.2008.05.009.
  • Vidhya, K. 2017. Phytoremediation of domestic waste water of Gandhi Nagar, Vellore using microalgae Chlorella vulgaris. International Journal of Current Advanced Research 3:770–3.
  • Yadav, G., S. Shanmugam, R. Sivaramakrishnan, D. Kumar, T. Mathimani, K. Brindhadevi, A. Pugazhendhi, and K. Rajendran. 2021. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 285:119093. doi: 10.1016/j.fuel.2020.119093.
  • Yerima, I. A., J. Appah, H. Danlami, M. B. Yerima, and F. L. Canada. 2018. Effects of sun and oven drying techniques on quality of oil produced from Chlorella vulgaris (Microalgae) biomass. Biotechnology Journal International 22 (1):1–11. doi: 10.9734/BJI/2018/44261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.