703
Views
0
CrossRef citations to date
0
Altmetric
Article

Synergistic effect of CTAB on Reactive Black 5 removal performance of Candida tropicalis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 126-136 | Published online: 27 Oct 2021

References

  • Akar, T., and M. Divriklioglu. 2010. Biosorption applications of modified fungal biomass for decolorization of reactive red 2 contaminated solutions: batch and dynamic flow mode studies. Bioresource Technology 101 (19):7271–7. doi: 10.1016/j.biortech.2010.04.044.
  • Akpomie, G., Dawodu, A. A., and O. Kayode. 2015. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal 54 (3):757–67. doi: 10.1016/j.aej.2015.03.025.
  • Aksu, Z., and G. Dönmez. 2000. The use of molasses in copper(II) containing wastewaters: effects on growth and copper(II) bioaccumulation properties of Kluyveromyces marxianus. Process Biochemistry 36 (5):451–8. doi: 10.1016/S0032-9592(00)00234-X.
  • Aksu, Z., and G. Dönmez. 2003. A Comparative Study on the Biosorption Characteristics of Some Yeasts for Remazol Blue Reactive Dye. Chemosphere 50 (8):1075–83. doi: 10.1016/S0045-6535(02)00623-9.
  • Al-Tohamy, R., J. Sun, M. F. Fareed, E. Kenawy, and S. S. Ali. 2020. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports 10 (1):12370.
  • Balarak, D., J. T. Al-Musawi, I. A. Mohammed, and H. Abasizadeh. 2020. The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Applied Sciences 2 (6):1–11. doi: 10.1007/s42452-020-2841-x.
  • Banerjee, S., R. K. Gautam, P. Rai, and M. C. Chattopadhyaya. 2016. Adsorptive removal of toxic dyes from aqueous phase using notorious weed Lantana camara (Linn.) as biosorbent. Research on Chemical Intermediates 42 (6):5677–708. doi: 10.1007/s11164-015-2397-3.
  • Bankole, P. O., A. A. Adekunle, O. F. Obidi, O. D. Olukanni, and S. P. Govindwar. 2017. Degradation of indigo dye by a newly isolated yeast, Diutina rugosa from dye wastewater polluted soil. Journal of Environmental Chemical Engineering 5 (5):4639–48. doi: 10.1016/j.jece.2017.08.050.
  • Barekati-Goudarzi, M., M. R. Mehrnia, F. P. Roudsari, and D. Boldor. 2016. Rapid separation of microalga Chlorella vulgaris using magnetic chitosan: process optimization using response surface methodology. Particulate Science and Technology 34 (2):165–72. doi: 10.1080/02726351.2015.1054973.
  • Bhatti, H. N., Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal, and A. Nazir. 2020. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules 150:861–70. doi: 10.1016/j.ijbiomac.2020.02.093.
  • Bounaas, M., A. Bouguettoucha, D. Chebli, A. Reffas, I. Harizi, F. Rouabah, and A. Amrane. 2019. High efficiency of methylene blue removal using a novel low-cost acid treated forest wastes, Cupressus semperirens cones: experimental results and modeling. Particulate Science and Technology 37 (4):504–9. doi: 10.1080/02726351.2017.1401569.
  • Bushra, R., S. Mohamad, Y. Alias, Y. Jin, and M. Ahmad. 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review. Microporous and Mesoporous Materials 319:111040. Elsevier Inc.: doi: 10.1016/j.micromeso.2021.111040.
  • Cardoso, N. F., R. B. Pinto, E. C. Lima, T. Calvete, C. V. Amavisca, B. Royer, M. L. Cunha, T. H. M. Fernandes, and I. S. Pinto. 2011. Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269 (1-3):92–103. doi: 10.1016/j.desal.2010.10.047.
  • Chaffin, W. L. 2008. Candida Albicans cell wall proteins. Microbiology and Molecular Biology Reviews : MMBR 72 (3):495–544. doi: 10.1128/mmbr.00032-07.
  • Charumathi, D., and N. Das. 2012. Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. Tropicalis. Desalination 285:22–30. doi: 10.1016/j.desal.2011.09.023.
  • De Rossi, A., M. R. Rigon, M. Zaparoli, R. D. Braido, L. M. Colla, G. L. Dotto, and J. S. Piccin. 2018. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environmental Science and Pollution Research International 25 (19):19179–86. doi: 10.1007/s11356-018-2377-4.
  • Deniz, F., and R. A. Kepekci. 2017. Bioremoval of malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal 132:172–8. doi: 10.1016/j.microc.2017.01.015.
  • do Nascimento, J. M., J. D. de Oliveira, A. C. L. Rizzo, and S. G. F. Leite. 2019. Biosorption Cu (II) by the Yeast Saccharomyces cerevisiae. Biotechnology Reports (Amsterdam, Netherlands) 21:e00315 doi: 10.1016/j.btre.2019.e00315.
  • Elfeky, S. A., S. E. Mahmoud, and A. F. Youssef. 2017. Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J Adv Res 8 (4):435–43. doi: 10.1016/j.jare.2017.06.002.
  • Fabryanty, R., C. Valencia, F. E. Soetaredjo, J. N. Putro, S. P. Santoso, A. Kurniawan, Y. H. Ju, and S. Ismadji. 2017. Removal of crystal violet dye by adsorption using bentonite – alginate composite. Journal of Environmental Chemical Engineering 5 (6):5677–87. doi: 10.1016/j.jece.2017.10.057.
  • Farah, J. Y., N. S. El-Gendy, and L. A. Farahat. 2007. Biosorption of astrazone blue basic dye from an aqueous solution using dried biomass of Baker's yeast. Journal of Hazardous Materials 148 (1-2):402–8. doi: 10.1016/j.jhazmat.2007.02.053.
  • Gangula, S., S. Y. Suen, and E. D. Conte. 2010. Analytical applications of admicelle and hemimicelle solid phase extraction of organic analytes. Microchemical Journal 95 (1):2–4. doi: 10.1016/j.microc.2009.10.005.
  • García, F. E., J. Plaza-Cazón, V. N. Montesinos, E. R. Donati, and M. I. Litter. 2018. Combined strategy for removal of reactive black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. Journal of Environmental Management 207:70–9. doi: 10.1016/j.jenvman.2017.11.002.
  • Guo, J., S. Chen, L. Liu, B. Li, P. Yang, L. Zhang, and Y. Feng. 2012. Adsorption of dye from wastewater using chitosan-CTAB modified bentonites. Journal of Colloid and Interface Science 382 (1):61–6. doi: 10.1016/j.jcis.2012.05.044.
  • Hamadi, F., H. Latrache, H. Zahir, A. Elghmari, M. Timinouni, and M. Ellouali. 2008. The Relation between Escherichia coli Surface Functional groups' composition and their physicochemical properties. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 39 (1):10–5. doi: 10.1590/S1517-83822008000100003.
  • Huang, J., D. Liu, J. Lu, H. Wang, X. Wei, and J. Liu. 2016. Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 492:242–8. doi: 10.1016/j.colsurfa.2015.11.071.
  • Irfan, M., M. Usman, A. Mansha, N. Rasool, M. Ibrahim, U. A. Rana, M. Siddiq, M. Zia-Ul-Haq, H. Z. E. Jaafar, and S. U. Khan. 2014. Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution. TheScientificWorldJournal 2014:540975–8. doi: 10.1155/2014/540975.
  • Iscen, C. F., I. Kiran, and S. Ilhan. 2007. Biosorption of reactive black 5 dye by Penicillium restrictum: the kinetic study. Journal of Hazardous Materials 143 (1-2):335–40. doi: 10.1016/j.jhazmat.2006.09.028.
  • Karadag, D., M. Turan, E. Akgul, S. Tok, and A. Faki. 2007. Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239 in aqueous solution onto surfactant-modified zeolite. Journal of Chemical & Engineering Data 52 (5):1615–20. doi: 10.1021/je7000057.
  • Kausar, A., K. Naeem, M. Iqbal, Z. Nazli, H. N. Bhatti, A. Ashraf, A. Nazir, H. S. Kusuma, and M. I. Khan. 2021. Kinetics, equilibrium and thermodynamics of dyes adsorption onto modified chitosan: A review. Zeitschrift Für Physikalische Chemie. doi: 10.1515/zpc-2019-1586.
  • Kodal, S. P., and Z. Aksu. 2017. Cationic surfactant-modified biosorption of anionic dyes by dried rhizopus arrhizus. Environmental Technology 38 (20):2551–61. doi: 10.1080/09593330.2016.1270357.
  • Li, Y., Y. Wei, S. Huang, X. Liu, Z. Jin, M. Zhang, J. Qu, and Y. Jin. 2018. Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: characteristics and mechanism. Journal of Molecular Liquids 269:824–32. doi: 10.1016/j.molliq.2018.08.060.
  • Maqbool, M.,. H. N. Bhatti, S. Sadaf, M. M. Al-Anazy, and M. Iqbal. 2020. Biocomposite of polyaniline and sodium alginate with Oscillatoria biomass: a potential adsorbent for the removal of basic blue 41. Journal of Materials Research and Technology 9 (6):14729–41. doi: 10.1016/j.jmrt.2020.10.017.
  • Maqbool, M.,. S. Sadaf, H. N. Bhatti, S. Rehmat, A. Kausar, S. A. Alissa, and M. Iqbal. 2021. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of congo red dye: kinetics, thermodynamics and desorption studies. Surfaces and Interfaces 25:101183. doi: 10.1016/j.surfin.2021.101183.
  • Nethaji, S., A. Sivasamy, and A. B. Mandal. 2013. Adsorption Isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology 10 (2):231–242. doi: 10.1007/s13762-012-0112-0.
  • Noreen, S., H. N. Bhatti, M. Iqbal, F. Hussain, and F. M. Sarim. 2020. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of acid black dye. International Journal of Biological Macromolecules 147:439–452. doi: 10.1016/j.ijbiomac.2019.12.257.
  • Nouri, H., E. Azin, A. Kamyabi, and H. Moghimi. 2021. Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater. International Journal of Environmental Science and Technology 18 (9):2545–2558. doi: 10.1007/s13762-020-03011-5.
  • Ohemeng-Boahen, G., D. D. Sewu, H. N. Tran, and S. H. Woo. 2021. Enhanced adsorption of Congo red from aqueous solution using chitosan/hematite nanocomposite hydrogel capsule fabricated via anionic surfactant gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 625:126911. doi: 10.1016/j.colsurfa.2021.126911.
  • Ojima, Y., S. Kosako, M. Kihara, N. Miyoshi, K. Igarashi, and M. Azuma. 2019. Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Scientific Reports 9 (1):1–9. doi: 10.1038/s41598-018-36306-2.
  • Patra, C., R. Gupta, D. Bedadeep, and S. Narayanasamy. 2020. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: a detail insight. Environmental Pollution (Barking, Essex : 1987) 266 (Pt 2):115102 doi: 10.1016/j.envpol.2020.115102.
  • Rogowska, A., P. Pomastowski, M. Złoch, V. Railean-Plugaru, A. Król, K. Rafińska, M. Szultka-Młyńska, and B. Buszewski. 2018. The Influence of different PH on the electrophoretic behaviour of Saccharomyces cerevisiae modified by calcium ions. Scientific Reports 8 (1):2–11. doi: 10.1038/s41598-018-25024-4.
  • Samarghandy, M. R., E. Hoseinzade, M. Taghavi, and S. Hoseinzadeh. 2011. Biosorption of reactive black 5 from aqueous solution using acid treated biomass from potato peel waste. Bioresources 6 (4):4840–4855.
  • Sarim, K. M., K. Kukreja, I. Shah, and C. K. Choudhary. 2019. Biosorption of direct textile dye Congo red by Bacillus subtilis HAU-KK01. Bioremediation Journal 23 (3):185–195. doi: 10.1080/10889868.2019.1641466.
  • Saroyan, H., D. Ntagiou, K. Rekos, and E. Deliyanni. 2019. Reactive black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide. Applied Sciences 9 (10)2167. doi: 10.3390/app910:.
  • Shaheed, M. A., and F. H. Hussein. 2014. Adsorption of reactive black 5 on synthesized titanium dioxide nanoparticles: equilibrium isotherm and kinetic studies. Journal of Nanomaterials 2014:1–12. doi: 10.1155/2014/198561.
  • Vakili, M., H. M. Zwain, A. Mojiri, W. Wang, F. Gholami, Z. Gholami, A. S. Giwa, B. Wang, G. Cagnetta, and B. Salamatinia. 2020. Effective adsorption of reactive black 5 onto hybrid hexadecylamine impregnated chitosan-powdered activated carbon beads. Water 12 (8):2242–14. doi: 10.3390/w12082242.
  • Vijayaraghavan, K., S. W. Won, and Y. S. Yun. 2008. Single- and dual-component biosorption of reactive black 5 and reactive orange 16 onto polysulfone-immobilized esterified Corynebacterium glutamicum. Industrial & Engineering Chemistry Research 47 (9):3179–3185. doi: 10.1021/ie071537p.
  • Vijayaraghavan, K., and Y. S. Yun. 2007. Chemical modification and immobilization of corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Industrial & Engineering Chemistry Research 46 (2):608–617. doi: 10.1021/ie061158g.
  • Vijayaraghavan, K., and Y. S. Yun. 2008. Biosorption of C.I. reactive black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes and Pigments 76 (3):726–732. doi: 10.1016/j.dyepig.2007.01.013.
  • Vishan, I., B. Saha, S. Sivaprakasam, and A. Kalamdhad. 2019. Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: biosorption kinetics, thermodynamics and mechanism. Environmental Technology & Innovation 14:100323. doi: 10.1016/j.eti.2019.100323.
  • Yahiaoui, C., M. Kameche, C. Innocent, and A. Khenifi. 2021. Conception of yeast microbial desalination cell: applications to dye wastewater treatment and lead removal. Chemical Engineering Communications 208 (3):364–375. doi: 10.1080/00986445.2020.1721479.
  • Yang, Y., D. Jin, G. Wang, D. Liu, X. Jia, and Y. Zhao. 2011. Biosorption of acid blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: kinetic study, equilibrium isotherm and ftir analysis. Colloids and Surfaces. B, Biointerfaces 88 (1):521–526. doi: 10.1016/j.colsurfb.2011.07.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.