211
Views
0
CrossRef citations to date
0
Altmetric
Notes

Identification of a strain of Auricularia and Taguchi optimization of petroleum-polluted soil mycoremediation

, , , &
Pages 222-231 | Published online: 30 Jan 2023

References

  • Abha, S., and C. S. Singh. 2012. Hydrocarbon pollution: Effects on living organisms, remediation of contaminated environments, and effects of heavy metals co-contamination on bioremediation. In Introduction to enhanced oil recovery (EOR) processes and bioremediation of oil-contaminated sites, 185–206. London: InTech.
  • Adongbede, E., and R. Sanni. 2014. Biodegradation of engine oil by Agaricus campestris (a white rot fungus). Journal of Bioremediation and Biodegradation 5 (262):2. doi: 10.4172/2155-6199.1000262.
  • Agarry, S., C. Owabor, and Y. Ro. 2012. Enhanced bioremediation of soil artificially contaminated with kerosene: Optimization of biostimulation agents through statistical experimental design. Journal of Petroleum & Environmental Biotechnology 3:120. doi: 10.4172/2157-7463.1000120.
  • Ahmad, S. A., K. N. E. K. Ahamad, W. L. W. Johari, M. I. E. Halmi, M. Y. Shukor, and M. T. Yusof. 2014. Kinetics of diesel degradation by an acrylamide-degrading bacterium. Rendiconti Lincei 25 (4):505–12. doi: 10.1007/s12210-014-0344-7.
  • Ai-Jawhari, I. F. H. 2014. Ability of some soil fungi in biodegradation of petroleum hydrocarbon. Journal of Applied & Environmental Microbiology 2 (2):46–52. doi: 10.12691/jaem-2-2-3.
  • Ajona, M., and P. Vasanthi. 2021. Bioremediation of petroleum contaminated soils–A review. Materials Today: Proceedings 45:7117–22. doi: 10.1016/j.matpr.2021.01.949.
  • Antón-Herrero, R., C. García-Delgado, N. Baena, B. Mayans, L. Delgado-Moreno, and E. Eymar. 2022. Assessment of different spent mushroom substrates to bioremediate soils contaminated with petroleum hydrocarbons. Applied Sciences 12 (15):7720. doi: 10.3390/app12157720.
  • Bellettini, M. B., F. A. Fiorda, H. A. Maieves, G. L. Teixeira, S. Ávila, P. S. Hornung, A. M. Júnior, and R. H. Ribani. 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences 26 (4):633–46. doi:10.1016/j.sjbs.2016.12.005.
  • Bundy, J., G. I. Paton, and C. Campbell. 2002. Microbial communities in different soil types do not converge after diesel contamination. Journal of Applied Microbiology 92 (2):276–88. doi: 10.1046/j.1365-2672.2002.01528.x.
  • D’Annibale, A., M. Ricci, V. Leonardi, D. Quaratino, E. Mincione, and M. Petruccioli. 2005. Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnology and Bioengineering 90 (6):723–31. doi: 10.1002/bit.20461.
  • Dao, A. T., J. Vonck, T. K. Janssens, H. T. Dang, A. Brouwer, and T. E. de Boer. 2019. Screening white-rot fungi for bioremediation potential of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Industrial Crops and Products 128:153–61. doi: 10.1016/j.indcrop.2018.10.059.
  • Dickson, U. J., M. Coffey, R. J. G. Mortimer, M. Di Bonito, and N. Ray. 2019. Mycoremediation of petroleum contaminated soils: Progress, prospects and perspectives. Environmental Science Processes & Impacts 21 (9):1446–58. doi: 10.1039/c9em00101h.
  • Hadibarata, T., and S. Tachibana. 2009. Microbial degradation of crude oil by fungi pre-grown on wood meal. In Interdisciplinary studies on environmental chemistry—environmental research in Asia, 317–22. Tokyo, Japan: Terrapub.
  • Hadibarata, T., S. Tachibana, and M. Askari. 2011. Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. Journal of Microbiology and Biotechnology 21 (3):299–304. doi:10.4014/jmb.1011.11009.
  • Husaini, A. A. S. A. 2014. Bioremediation of crude oil by different fungal genera. Asian Journal of Plant Biology 2 (1):11–18. doi: 10.54987/ajpb.v2i1.83.
  • Jain, P., V. Gupta, R. Gaur, M. Lowry, D. Jaroli, and U. Chauhan. 2011. Bioremediation of petroleum oil contaminated soil and water. Research Journal of Environmental Toxicology 5 (1):1. doi: 10.3923/rjet.2011.1.26.
  • Kadiri, M., and A. H. Arzai. 2004. Cultivation of Lentinus subnudus berk (Polyporales: Polyporaceae) on woodlogs. Bioresource Technology 94 (1):65–7. doi:10.1016/j.biortech.2003.11.012.
  • Li, L., C. H. Zhong, and Y. B. Bian. 2014. The molecular diversity analysis of Auricularia auricula-judae in China by nuclear ribosomal DNA intergenic spacer. Electronic Journal of Biotechnology 17 (1):27–33. doi: 10.1016/j.ejbt.2013.12.005.
  • Liu, H., X. Tan, J. Guo, X. Liang, Q. Xie, and S. Chen. 2020. Bioremediation of oil-contaminated soil by combination of soil conditioner and microorganism. Journal of Soils and Sediments 20 (4):2121–9. doi: 10.1007/s11368-020-02591-6.
  • Looney, B. P., J. M. Birkebak, and P. B. Matheny. 2013. Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. North American Fungi 8:1–25. doi: 10.2509/naf2013.008.006.
  • Mariano, A. P., A. P. d. A. G. Kataoka, D. d. F. d. Angelis, and D. M. Bonotto. 2007. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station. Brazilian Journal of Microbiology 38 (2):346–53. doi: 10.1590/s1517-83822007000200030.
  • Mohammadi-Sichani, M. M., M. M. Assadi, A. Farazmand, M. Kianirad, A. Ahadi, and H. H. Ghahderijani. 2017. Bioremediation of soil contaminated crude oil by Agaricomycetes. Journal of Environmental Health Science and Engineering 15 (1):1–6. doi: 10.1186/s40201-016-0263-x.
  • Obire, O., E. Anyanwu, and R. Okigbo. 2008. Saprophytic and crude oil degrading fungi from cow dung and poultry droppings as bioremediating agents. Journal of Agricultural Technology 4 (2):81–9.http://www.ijat-aatsea.com/pdf/Nov_v4_n2_08/9%20IJAT2008-12-R.pdf.
  • Picornell-Buendía, M. R., A. Pardo-Giménez, and J. A. De Juan-Valero. 2016. Agronomic qualitative viability of spent Pleurotus substrate and its mixture with wheat bran and a commercial supplement. Journal of Food Quality 39 (5):533–44. doi: 10.1111/jfq.12216.
  • Pinedo, J., R. Ibáñez, O. Primo, and A. Irabien. 2012. Hydrocarbon analysis for risk assessment in polluted soils. Chemical Engineering Transactions 28:79–84. doi: 10.3303/CET1228014.
  • Pointing, S. 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57 (1–2):20–33. doi:10.1007/s002530100745.
  • Ruiz-Dueñas, F. J., and Á. T. Martínez. 2009. Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology 2 (2):164–77. doi: 10.1111/j.1751-7915.2008.00078.x.
  • Rytioja, J., K. Hildén, J. Yuzon, A. Hatakka, R. P. de Vries, and M. R. Mäkelä. 2014. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews 78 (4):614–49. doi: 10.1128/mmbr.00035-14.
  • Semple, K. T., B. J. Reid, and T. Fermor. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution (Barking, Essex: 1987) 112 (2):269–83. doi: 10.1016/s0269-7491(00)00099-3.
  • Tang, L., Y. Xiao, L. Li, Q. Guo, and Y. Bian. 2010. Analysis of genetic diversity among Chinese Auricularia auricula cultivars using combined ISSR and SRAP markers. Current Microbiology 61 (2):132–40. doi:10.1007/s00284-010-9587-4.
  • Thenmozhi, R., K. Arumugam, A. Nagasathya, N. Thajuddin, and A. Paneerselvam. 2013. Studies on Mycoremediation of used engine oil contaminated soil samples. Advances in Applied Science Research 4 (2):1. https://www.primescholars.com/articles/studies-on-mycoremediation-of-used-engine-oil-contaminated-soil-samples.pdf.
  • Varzaghani, N. B., S. Shokrollahzadeh, and A. Farazmand. 2021. Degradation of tetrachloroethene using aerobic Sphingopyxis ummariensis bacteria in a gas-recycling fixed-bed bioreactor. Journal of Environmental Chemical Engineering 9 (2):105098. doi: 10.1016/j.jece.2021.105098.
  • Yateem, A., M. Balba, N. Al-Awadhi, and A. El-Nawawy. 1998. White rot fungi and their role in remediating oil-contaminated soil. Environment International 24 (1–2):181–7. doi: 10.1016/S0160-4120(97)00134-7.
  • Young, D., J. Rice, R. Martin, E. Lindquist, A. Lipzen, I. Grigoriev, and D. Hibbett. 2015. Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One.10 (6):e0130381. doi: 10.1371/journal.pone.0130381.
  • Zafra, G., Á. E. Absalón, M. D. C. Cuevas, and D. V. Cortés-Espinosa. 2014. Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air, & Soil Pollution 225 (2):1–18. doi: 10.1007/s11270-013-1826-4.
  • Zervakis, G., A. Philippoussis, S. Ioannidou, and P. Diamantopoulou. 2001. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiologica 46 (3):231–4. doi: 10.1007/bf02818539.
  • Zhang, C., D. Wu, and H. Ren. 2020. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Scientific Reports 10 (1):1–8. doi: 10.1038/s41598-020-66169-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.