81
Views
0
CrossRef citations to date
0
Altmetric
Note

Hydro thermal carbonization (HTC) of sewage sludge: process optimization through RSM and assessing its energy potential

, , , , &

References

  • Akhtar, J., and N. A. S. Amin. 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 15 (3):1615–24. doi: 10.1016/j.rser.2010.11.054.
  • Areeprasert, C., P. Zhao, D. Ma, Y. Shen, and K. Yoshikawa. 2014. Alternative solid fuel production from paper sludge employing hydrothermal treatment. Energy & Fuels 28 (2):1198–206. doi: 10.1021/ef402371h.
  • Atallah, E., J. Zeaiter, M. N. Ahmad, M. Kwapinska, J. J. Leahy, and W. Kwapinski. 2020. The effect of temperature, residence time, and water-sludge ratio on hydrothermal carbonization of DAF dairy sludge. Journal of Environmental Chemical Engineering 8 (1):103599. doi: 10.1016/j.jece.2019.103599.
  • Behera, D., and B. K. Nandi. 2021. Effect of coal particle density on coal properties and combustion characteristics. Powder Technology 382:594–604. doi: 10.1016/j.powtec.2021.01.008.
  • Belda, R. M., A. Lidon, and F. Fornes. 2016. Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products 94:132–42. doi: 10.1016/j.indcrop.2016.08.024.
  • Blach, T., and M. Engelhart. 2021. Optimizing the hydrothermal carbonization of sewage sludge—response surface methodology and the effect of volatile solids. Water 13 (9):1225. doi: 10.3390/w13091225.
  • Boussarsar, H., B. Rogé, and M. Mathlouthi. 2009. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresource Technology 100 (24):6537–42. doi: 10.1016/j.biortech.2009.07.019.
  • Chen, C., W. Liang, F. Fan, and C. Wang. 2021. The effect of temperature on the properties of hydrochars obtained by hydrothermal carbonization of waste Camellia oleifera shells. ACS Omega 6 (25):16546–52. doi: 10.1021/acsomega.1c01787.
  • Chen, X., Q. Lin, R. He, X. Zhao, and G. Li. 2017. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresource Technology 241:236–43. doi: 10.1016/j.biortech.2017.04.012.
  • Cong, K., Y. Zhang, F. Han, and Q. Li. 2019. Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere. Energy 170:840–8. doi: 10.1016/j.energy.2018.12.216.
  • Czerwinska, K., M. Sliz, and M. Wilk. 2022. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renewable and Sustainable Energy Reviews 154:111873. doi: 10.1016/j.rser.2021.111873.
  • Danso-Boateng, E., R. G. Holdich, G. Shama, A. D. Wheatley, M. Sohail, and S. J. Martin. 2013. Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production. Applied Energy. 111:351–7. doi: 10.1016/j.apenergy.2013.04.090.
  • Danso-Boateng, E., G. Shama, A. D. Wheatley, S. J. Martin, and R. G. Holdich. 2015. Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresource Technology 177:318–27. doi: 10.1016/j.biortech.2014.11.096.
  • Fakudze, S., and J. Chen. 2023. A critical review on co-hydrothermal carbonization of biomass and fossil-based feedstocks for cleaner solid fuel production: Synergistic effects and environmental benefits. Chemical Engineering Journal 457:141004. doi: 10.1016/j.cej.2022.141004.
  • Fang, Z., and C. C. Xu. (Eds.). 2014. Near-critical and supercritical water and their applications for biorefineries (Vol. 2). New York, NY: Springer. doi: 10.1007/978-94-017-8923-3.
  • Gai, C., M. Chen, T. Liu, N. Peng, and Z. Liu. 2016. Gasification characteristics of hydrochar and pyrochar derived from sewage sludge. Energy 113:957–65. doi: 10.1016/j.energy.2016.07.129.
  • Garlapalli, R. K., B. Wirth, and M. T. Reza. 2016. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresource Technology 220:168–74. doi: 10.1016/j.biortech.2016.08.071.
  • Gulec, F., L. M. G. Riesco, O. Williams, E. T. Kostas, A. Samson, and E. Lester. 2021. Hydrothermal conversion of different lignocellulosic biomass feedstocks–Effect of the process conditions on hydrochar structures. Fuel 302:121166. doi: 10.1016/j.fuel.2021.121166.
  • He, C., A. Giannis, and J. Y. Wang. 2013. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy 111:257–66. doi: 10.1016/j.apenergy.2013.04.084.
  • Jin, H., E. Sun, Y. Xu, R. Guo, M. Zheng, H. Huang, and S. Zhang. 2017. Hydrochar derived from anaerobic solid digestates of swine manure and rice straw: A potential recyclable material. BioResources 13 (1):1019–34. doi: 10.15376/biores.13.1.1019-1034.
  • Kambo, H. S., and A. Dutta. 2014. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy 135:182–91. doi: 10.1016/j.apenergy.2014.08.094.
  • Kim, D., S. Park, and K. Y. Park. 2017. Upgrading the fuel properties of sludge and low rank coal. Energy 141:598–602. doi: 10.1016/j.energy.2017.09.113.
  • Kim, D., K. Lee, and K. Y. Park. 2014. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–5. doi: 10.1016/j.fuel.2014.04.030.
  • Libra, J. A., K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. M. Titirici, C. Fühner, O. Bens, J. Kern, et al. 2011. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2 (1):71–106. doi: 10.4155/bfs.10.81.
  • Lin, Y., X. Ma, X. Peng, and Z. Yu. 2017. Forecasting the byproducts generated by hydrothermal carbonisation of municipal solid wastes. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA 35 (1):92–100. doi: 10.1177/0734242X166780.
  • Lin, Y., X. Ma, X. Peng, S. Hu, Z. Yu, and S. Fang. 2015. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Applied Thermal Engineering 91:574–82. doi: 10.1016/j.applthermaleng.2015.08.064.
  • Liu, L., B. Kong, J. Yang, Q. Liu, and X. Liu. 2020. CO2 gasification kinetics and structural characteristics of tri-high coal char prepared at elevated temperature. ACS Omega 5 (1):507–17. doi: 10.1021/acsomega.9b03055.
  • Liu, Z., A. Quek, S. K. Hoekman, and R. Balasubramanian. 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–9. doi: 10.1016/j.fuel.2012.07.069.
  • Liu, Z., Z. Zhang, S. K. Choi, and Y. Lu. 2018. Surface properties and pore structure of anthracite, bituminous coal and lignite. Energies 11 (6):1502. doi: 10.3390/en11061502.
  • Liu, Z., and R. Balasubramanian. 2012. Hydrothermal carbonization of waste biomass for energy generation. Procedia Environmental Sciences 16:159–66. doi: 10.1016/j.proenv.2012.10.022.
  • Mani, T., P. Murugan, J. Abedi, and N. Mahinpey. 2010. Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering Research and Design 88 (8):952–8. doi: 10.1016/j.cherd.2010.02.008.
  • Merzari, F., J. Goldfarb, G. Andreottola, T. Mimmo, M. Volpe, and L. Fiori. 2020. Hydrothermal carbonization as a strategy for sewage sludge management: Influence of process withdrawal point on hydrochar properties. Energies 13 (11):2890. doi: 10.3390/en13112890.
  • Montgomery, D. C. 2001. Design and analysis of experiments. 5th ed. New York, NY: John Wiley & Sons, Inc.
  • Nakason, K., B. Panyapinyopol, V. Kanokkantapong, N. Viriya-Empikul, W. Kraithong, and P. Pavasant. 2018. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction. Journal of the Energy Institute 91 (5):786–96. doi: 10.1016/j.joei.2017.01.002.
  • Nguyen, T. B., Q. M. Truong, C. W. Chen, R. A. Doong, W. H. Chen, and C. D. Dong. 2021. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation. Bioresource Technology 346:126351–10. doi: 10.1016/j.biortech.2021.126351.
  • Oliveira, A. S., A. Sarrión, J. A. Baeza, E. Diaz, L. Calvo, A. F. Mohedano, and M. A. Gilarranz. 2022. Integration of hydrothermal carbonization and aqueous phase reforming for energy recovery from sewage sludge. Chemical Engineering Journal 442:136301. doi: 10.1016/j.cej.2022.136301.
  • Oumabady, S., P. S. S, S. P. B. Kamaludeen, M. Ramasamy, P. Kalaiselvi, and E. Parameswari. 2020. Preparation and characterization of optimized hydrochar from paper board mill sludge. Scientific Reports 10 (1):773. doi: 10.1038/s41598-019-57163-7.
  • Parameswari, E., R. Kalaiarasi, V. Davamani, P. Kalaiselvi, S. Paul Sebastian, and K. Suganya. 2021. Potential of activated biochar for sequestration of chromium (VI) from aqueous solution: Parameters optimised by RSM, Isotherm and kinetics study. International Journal of Environmental Analytical Chemistry 103 (18):6816–34. doi: 10.1080/03067319.2021.1962319.
  • Peng, C., Y. Zhai, Y. Zhu, B. Xu, T. Wang, C. Li, and G. Zeng. 2016. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 176:110–8. doi: 10.1016/j.fuel.2016.02.068.
  • Roman, S., J. M. V. Nabais, J. F. Gonzalez, C. M. Gonzalez‐Garcia, and A. L. Ortiz. 2012. Study of the contributions of non‐specific and specific interactions during fluoxetine adsorption onto activated carbons. Clean – Soil, Air, Water 40 (7):698–705. doi: 10.1002/clen.201100009.
  • Selvaraj, P. S., K. Periasamy, K. Suganya, K. Ramadass, S. Muthusamy, P. Ramesh, R. Bush, S. G. T. Vincent, and T. Palanisami. 2022. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Critical Reviews in Environmental Science and Technology 52 (11):1915–99. doi: 10.1080/10643389.2020.1864957.
  • Sevilla, M., and A. B. Fuertes. 2011. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science 4 (5):1765–71. doi: 10.1039/c0ee00784f.
  • Shakiba, A., A. Aliasghar, K. Moazeni, and M. Pazoki. 2023. Hydrothermal carbonization of sewage sludge with sawdust and corn stalk: Optimization of process parameters and characterization of hydrochar. Bioenergy Research 1–12. doi: 10.1007/s12155-022-10552-9.
  • Sumbane-Prinsloo, L., J. Bunt, S. Piketh, H. Neomagus, F. Waanders, and R. Matjie. 2021. The influence of particle size on the thermal performance of coal and its derived char in a Union stove. Energy Geoscience 2 (2):148–59. doi: 10.1016/j.engeos.2020.08.001.
  • Wilk, M., K. Czerwińska, M. Śliz, and M. Imbierowicz. 2023. Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation. Energy Reports 9:39–58. doi: 10.1016/j.egyr.2023.03.092.
  • Wilk, M., M. Śliz, and M. Gajek. 2021. The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp. Renewable Energy 177:216–28. doi: 10.1016/j.renene.2021.05.112.
  • Yang, W., H. Wang, M. Zhang, J. Zhu, J. Zhou, and S. Wu. 2016. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Bioresource Technology 205:199–204. doi: 10.1016/j.biortech.2016.01.068.
  • Yuan, S. J., and X. H. Dai. 2017. Sewage sludgebased functional nanomaterials: Development and applications. Environmental Science: Nano 4(1):17–26. doi: 10.1039/C6EN00177G.
  • Zdybel, J., J. Karamon, T. Kłapeć, M. Włodarczyk-Ramus, M. Różycki, E. Bilska-Zając, A. Kominek, and T. Cencek. 2019. Negative effect of flocculant (cationic acrylamide) on detectability of the nematode eggs in sewage sludge. Journal of Environmental Management 231:905–8. doi: 10.1016/j.jenvman.2018.10.105.
  • Zhang, B., J. Wang, Z. Xu, S. Wu, R. Luque, and H. Zhang. 2023. Sewage sludge valorisation by hydrothermal carbonization: A new method to enhance nitrogen removal in hydrochar catalyzed with Ni–Mg–Al layered double oxides. Journal of Cleaner Production 386:135880. doi: 10.1016/j.jclepro.2023.135880.
  • Zheng, C., X. Ma, Z. Yao, and X. Chen. 2019. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Bioresource Technology. 285 (121347):121347. doi: 10.1016/jbiortech.2019.121347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.