254
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Evaluation of the potential of agricultural wastes-cattle manure and poultry manure for bioremediation of crude oil-contaminated soil

, , & ORCID Icon

References

  • Agarry, S. E., M. O. Aremu, and O. A. Aworanti. 2013. Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic waste. Journal of Petroleum & Environmental Biotechnology 4:137.
  • Agegnehu, G., A. K. Srivastava, and M. I. Bird. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology 119:156–170. doi: 10.1016/j.apsoil.2017.06.008.
  • Aisien, F. A., E. T. Aisien, and I. O. Oboh. 2015. Phytoremediation of petroleum-polluted soils. In Phytoremediation, ed. A. A. Ansari, S.S. Gill, R. Gill, G. R. Lanza, and L. Newman, 243–252. Cham: Springer International Publishing.
  • Akpokodje, O. I., and H. Uguru. 2019. Bioremediation of hydrocarbon contaminated soil: Assessment of compost manure and organic soap. Transactions on Machine Learning and Artificial Intelligence 7 (5):13–22. doi: 10.14738/tmlai.75.7013.
  • Behera, S. S., and C. R. Ray. 2021. Bioprospecting of cow dung microflora for sustainable agricultural, biotechnological and environmental applications. Current Research in Microbial Sciences 2:100018. doi: 10.1016/j.crmicr.2020.100018.
  • Bhatt, K., and D. K. Maheshwari. 2019. Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Scientific Reports 9 (1):14232. doi: 10.1038/s41598-019-50788-8.
  • Chao, Z., W. Daoji, and R. Huixue. 2020. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Scientific Reports 10:9188. doi: 10.1038/s41598-020-66169-5.
  • Chawla, N., S. Sunita, K. Kamlesh, and R. Kumar. 2013. Bioremediation: An emerging technology for remediation of pesticides. Research Journal of Chemistry and Environment 17:88–105.
  • Chen, M., P. Xu, G. Zeng, C. Yang, D. Huang, and J. Zhang. 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnology Advances 33 (6 Pt 1):745–755. doi: 10.1016/j.biotechadv.2015.05.003.
  • Cook, R. L., and D. Hesterberg. 2013. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. International Journal of Phytoremediation 15 (9):844–860. doi: 10.1080/15226514.2012.760518.
  • dos Santos, J. J., and L. T. Maranho. 2018. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. Journal of Environmental Management 210:104–113. doi: 10.1016/j.jenvman.2018.01.015.
  • Fries, R., M. Akcan, N. Bandick, and A. Kobe. 2005. Microflora of two different types of poultry litter. British Poultry Science 46 (6):668–672. doi: 10.1080/00071660500395483.
  • Ghazali, F. M., R. N. Z. A. Rahman, A. B. Salleh, and M. Basri. 2004. Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation 54 (1):61–67. doi: 10.1016/j.ibiod.2004.02.002.
  • Gupta, K. K., K. R. Aneja, and D. Rana. 2016. Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing 3 (1):28. doi: 10.1186/s40643-016-0105-9.
  • Kästner, M., and A. Miltner. 2016. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Applied Microbiology and Biotechnology 100 (8):3433–3449. doi: 10.1007/s00253-016-7378-y.
  • Knaebel, D. B., T. W. Federle, D. C. McAvoy, and J. R. Vestal. 1994. Effects of mineral and organic soil constituents on microbial mineralisation of organic compounds in natural soil. Applied and Environmental Microbiology 60 (12):4500–4508. doi: 10.1128/aem.60.12.4500-4508.1994.
  • Kujat, J. D. 1999. A comparison of popular remedial technologies for petroleum contaminated soils from leaking underground storage tanks. Electronic Green Journal 1 (11):1–18. doi: 10.5070/G311110353.
  • Li, X., H. Li, and C. Qu. 2019. A review of the mechanism of microbial degradation of petroleum pollution. IOP Conference Series: Materials Science and Engineering 484:012060. doi: 10.1088/1757-899X/484/1/012060.
  • Lim, M. W., E. V. Lau, and P. E. Poh. 2016. A comprehensive guide of remediation technologies for oil contaminated soil–Present works and future directions. Marine Pollution Bulletin 109 (1):14–45. doi: 10.1016/j.marpolbul.2016.04.023.
  • Megharaj, M., B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, and R. Naidu. 2011. Bioremediation approaches for organic pollutants: A critical perspective. Environment International 37 (8):1362–1375. doi: 10.1016/j.envint.2011.06.003.
  • Obiakalaije, U. M., O. A. Makinde, and E. R. Amakoromo. 2015. Bioremediation of crude oil polluted soil using animal waste. International Journal of Environmental Bioremediation & Biodegradation 3 (3):79–85.http://pubs.sciepub.com/ijebb/3/3/2.
  • Ofoegbu, R. U., Y. O. L. Momoh, and I. L. Nwaogazie. 2015. Bioremediation of crude oil contaminated soil using organic and inorganic fertilizers. Journal of Petroleum & Environmental Biotechnology 6 (1):198. doi: 10.4172/2157-7463.1000198.
  • Olivia, C. U., K. T. Rachel, and A. K. Melissa. 2019. Effects of community-accessible biochar and compost on diesel-contaminated soil. Bioremediation Journal 23 (2):107–117. doi: 10.1080/10889868.2019.1603139.
  • Oyedele, A. O., and I. A. Amoo. 2014. Remediation of crude oil polluted soil using cow dung manure in relations to the growth of maize (Zea mays L.). Canadian Open Agricultural and Soil Science Journal 1 (1):1–16.
  • Sabaté, J., M. Viñas, and A. M. Solanas. 2004. Laboratory-scale bioremediation experiments on hydrocarbon-contamined soil. International Biodeterioration & Biodegradation 54 (1):19–25. doi: 10.1016/j.ibiod.2003.12.002.
  • Sam, K., F. Coulon, and G. Prpich. 2016. Working towards an integrated land contamination framework for Nigeria. Science of the Total Environment 571:916–925. doi: 10.1016/j.scitotenv.2016.07.075.
  • Sayara, T., M. Sarrà, and A. Sánchez. 2010. Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. Journal of Hazardous Materials 179 (1–3):999–1006. doi: 10.1016/j.jhazmat.2010.03.104.
  • Semple, K. T., B. J. Reid, and T. R. Fermor. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution 112 (2):269–283. doi: 10.1016/s0269-7491(00)00099-3.
  • Singh, M., G. Pant, K. Hossain, and A. Bhatia. 2017. Green remediation. Tool for safe and sustainable environment: A review. Applied Water Science 7 (6):2629–2635. doi: 10.1007/s13201-016-0461-9.
  • Sleegers, F. 2010. Phytoremediation as green infrastructure and a landscape of experiences. Paper presented at the Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 15, University of Massachusetts. https://scholarworks.umass.edu/cgi/viewcontent.gi?article¼1143&context¼soilsproceedings.
  • Stephenson, C., and C. R. Black. 2014. One step forward, two steps back: The evolution of phytoremediation into commercial technologies. Bioscience Horizons 7:hzu009. doi: 10.1093/biohorizons/hzu009.
  • UNEP (United Nations Environment Program). 2011. Environmental assessment of Ogoniland. UNEP, Nairobi, Kenya. Accessed April 21, 2023. https://www.unep.org/resources/report/environmental-assessment-ogoniland.
  • Wu, H., C. Lai, G. Zeng, J. Liang, J. Chen, J. Xu, J. Dai, X. Li, J. Liu, M. Chen, et al. 2017. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review. Critical Reviews in Biotechnology 37 (6):754–764. doi: 10.1080/07388551.2016.1232696.