29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioaugmentation of manures by a tiamulin-degrading Sphingomonas as a means to alleviate environmental dispersal of antibiotic residues

, , , , &

References

  • Al-Gheethi, A. A., R. M. S. R. Mohamed, A. N. Efaq, I. Norli, ΑΑ. Halid, H. K. Amir, and M. O. Ab Kadir. 2016. Bioaugmentation process of secondary effluents for reduction of pathogens, heavy metals and antibiotics. Journal of Water and Health 14 (5):780–95. doi: 10.2166/wh.2016.046.
  • Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology: A Journal of the International Association on Water Pollution Research 59 (5):927–34. doi: 10.2166/wst.2009.040.
  • Bauer, A., J. Lizasoain, E. Nettmann, I. Bergmann, K. Mundt, M. Klocke, Μ. Rincón, T. Amon, and G. Piringer. 2014. Effects of the antibiotics chlortetracycline andenrofloxacin on the anaerobic digestion in continuous experiments. BioEnergy Research 7 (4):1244–52. doi: 10.1007/s12155-014-9458-0.
  • Berendsen, B. J. A., J. Lahr, C. Nibbeling, L. J. M. Jansen, I. E. A. Bongers, E. L. Wipfler, and M. G. M. van de Schans. 2018. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 204:267–76. doi: 10.1016/j.chemosphere.2018.04.042.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13 (7):581–3. doi: 10.1038/nmeth.3869.
  • Castro-Sánchez, E., L. S. P. Moore, F. Husson, and A. H. Holmes. 2016. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infectious Diseases 16 (1):465. doi: 10.1186/s12879-016-1810-x.
  • Christou, M. L., S. Vasileiadis, S. D. Kalamaras, D. G. Karpouzas, I. Angelidaki, and T. A. Kotsopoulos. 2021. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics. Bioresource Technology 320 (Pt A):124323. doi: 10.1016/j.biortech.2020.124323.
  • Comeau, A. M., G. M. Douglas, and M. G. I. Langille. 2017. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2 (1):e00127-16. doi: 10.1128/mSystems.00127-16.
  • Dixon, P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14 (6):927–30. doi: 10.1111/j.1654-1103.2003.tb02228.x.
  • European Medicines Agency (EMA). 1999. Tiamulin, summary report. Committee for veterinary medicinal products.
  • European Medicines Agency (EMA). 2014. Sales of veterinary antimicrobial agents in 29 European countries in 2014. Trends from 2011 to 2014.
  • European Medicines Agency (EMA). 2019. Sales of veterinary antimicrobial agents in 31 European countries in 2017.
  • European Medicines Agency (EMA). 2021. Sales of veterinary antimicrobial agents in 31 European countries in 2021 Trends from 2010 to 2021 Twelfth ESVAC report.
  • Gaballah, M. S., M. Sobhi, J. Guo, M. Philbert, L. Min, Y. Zheng, M. A. Ghorab, and R. Dong. 2023. Evaluating the removal and impacts of combined tetracycline, oxytetracycline, sulfadiazine, and norfloxacin during swine manure storage process at ambient temperatures. Journal of Environmental Chemical Engineering 11 (3):109765. doi: 10.1016/j.jece.2023.109765.
  • Hirth, N., E. Topp, U. Dörfler, E. Stupperich, J. C. Munch, and R. Schroll. 2016. An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chemical and Biological Technologies in Agriculture 3 (1):29. doi: 10.1186/s40538-016-0080-6.
  • Holliger, C., M. Alves, D. Andrade, I. Angelidaki, S. Astals, U. Baier, C. Bougrier, P. Buffière, M. Carballa, V. de Wilde, et al. 2016. Towards a standardization of biomethane potential tests. Water Science and Technology: A Journal of the International Association on Water Pollution Research 74 (11):2515–22. doi: 10.2166/wst.2016.336.
  • Hong, X., Y. Zhao, R. Zhuang, J. Liu, G. Guo, J. Chena, and Y. Yao. 2020. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RCS Advances 10 (55):33086–102. doi: 10.1039/d0ra04705h.
  • Jorgensen, S. E, andB. Halling-Sorensen. 2000. Drugs in the environment. Chemosphere 40 (7):691–9. doi: 10.1016/S0045-6535(99)00438-5.
  • Kalamaras, S. D., S. Vasileiadis, P. Karas, I. Angelidaki, and T. A. Kotsopoulos. 2020. Microbial adaptation to high ammonia concentrations during anaerobic digestion of manure-based feedstock: Biomethanation and 16S rRNA gene sequencing. Journal of Chemical Technology & Biotechnology 95 (7):1970–9. doi: 10.1002/jctb.6385.
  • Karim, K., K. T. Klasson, R. Hoffman, S. R. Drescher, D. W. DePaoli, and M. H. Al-Dahhan. 2005. Anaerobic digestion of animal waste: Effect of mixing. Bioresource Technology 96 (14):1607–12. doi: 10.1016/j.biortech.2004.12.021.
  • Kasumba, J., K. Appala, G. E. Agga, J. H. Loughrin, and E. D. Conte. 2020. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 55 (2):135–47. doi: 10.1080/03601234.2019.1667190.
  • Katsivelou, E., C. Perruchon, P. A. Karas, A. Sarantidou, E. Pappa, A. Katsoula, P. Ligda, S. Sotiraki, F. Martin-Laurent, S. Vasileiadis, et al. 2023. Accelerated dissipation, soil microbial toxicity and dispersal of antimicrobial resistance in soils repeatedly exposed to tiamulin, tilmicosin and sulfamethoxazole. The Science of the Total Environment 893:164817. doi: 10.1016/j.scitotenv.2023.164817.
  • Marcon, E., and B. Hérault. 2015. entropart: An R package to measure and partition diversity. Journal of Statistical Software 67 (8). http://EconPapers.repec.org/RePEc:jss:jstsof:v:067:i08. doi: 10.18637/jss.v067.i08.
  • Martin, M. J., S. E. Thottathil, and T. B. Newman. 2015. Antibiotics overuse in animal agriculture: A call to action for health care providers. American Journal of Public Health 105 (12):2409–10. doi: 10.2105/AJPH.2015.302870.
  • Merlin Christy, P., L. R. Gopinath, and D. Divya. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews 34:167–73. volume doi: 10.1016/j.rser.2014.03.010.
  • Miglani, R., N. Parveen, A. Kumar, M. A. Ansari, S. Khanna, G. Rawat, A. K. Panda, S. S. Bisht, J. Upadhyay, and M. N. Ansari. 2022. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 12 (9):818. doi: 10.3390/metabo12090818.
  • Nguyen, P. Y., G. Carvalho, F. Polesel, E. Torresi, A. M. Rodrigues, J. E. Rodrigues, V. V. Cardoso, M. J. Benoliel, B. G. Plósz, M. A. M. Reis, et al. 2018. Bioaugmentation of activated sludge with Achromobacter denitrificans PR1 for enhancing the biotransformation of sulfamethoxazole and its human conjugates in real wastewater: Kinetic tests and modelling. Chemical Engineering Journal and the Biochemical Engineering Journal. 352:79–89. doi: 10.1016/j.cej.2018.07.011.
  • Nguyen, X. T. K., O. Pinyakong, and P. Thayanukul. 2019. Bacterial community structures and biodegradation kinetic of Tiamulin antibiotic degrading enriched consortia from swine wastewater. Journal of Environmental Health Science & Engineering 17 (2):1121–30. doi: 10.1007/s40201-019-00426-2.
  • Nguyen, X. T. K., P. Thayanukul, O. Pinyakong, and O. Suttinun. 2017. Tiamulin removal by wood-rot fungi isolated from swine farms and role of ligninolytic enzymes. International Biodeterioration & Biodegradation 116:147–54. doi: 10.1016/j.ibiod.2016.10.010.
  • Pan, M., and L. M. Chu. 2017. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution (Barking, Essex: 1987)231 (Pt 1):829–36. doi: 10.1016/j.envpol.2017.08.051.
  • Perruchon, C., A. Chatzinotas, M. Omirou, S. Vasileiadis, U. Menkissoglou-Spiroudi, and D. G. Karpouzas. 2017. Isolation of a bacterial consortium able to degrade the fungicide thiabendazole: The key role of a Sphingomonas phylotype. Applied Microbiology and Biotechnology 101 (9):3881–93. doi: 10.1007/s00253-017-8128-5.
  • Perruchon, C., E. Katsivelou, P. A. Karas, S. Vassilakis, A. A. Lithourgidis, T. A. Kotsopoulos, S. Sotiraki, S. Vasileiadis, and D. G. Karpouzas. 2022. Following the route of veterinary antibiotics tiamulin and tilmicosin from livestock farms to agricultural soils. Journal of Hazardous Materials 429:128293. doi: 10.1016/j.jhazmat.2022.128293.
  • Perruchon, C., N. Tagkalidou, E. Katsivelou, A. P. Karas, N. Kalogiouri, O. Menkisoglou, S. Vasileiadis, and G. D. Karpouzas. 2023. Isolation and characterization of a Sphingomonas strain able to degrade the pleuromutilin antibiotic tiamulin. 10th Conference of Mikrobiokosmos. 1:56.
  • R Core Team. 2023. R: A language and environment for statistical computing, reference index version 4.1.3. R Foundation for Statistical Computing
  • Schlüsener, M. P., M. A. von Arb, and K. Bester. 2006. Elimination of macrolides, tiamulin, and salinomycin during manure storage. Archives of Environmental Contamination and Toxicology 51 (1):21–8. doi: 10.1007/s00244-004-0240-8.
  • Shi, Y., H. Lin, J. Ma, R. Zhu, W. Sun, X. Lin, J. Zhang, H. Zheng, and X. Zhang. 2020. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. Journal of Hazardous Materials 403:123996. doi: 10.1016/j.jhazmat.2020.123996.
  • Song, W., and M. Guo. 2014. Residual veterinary pharmaceuticals in animal manures and their environmental behaviors in soils. In: Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment, Chapter 2, eds. He, Z and H. Zhang. London: Springer. doi: 10.1007/978-94-017-8807-6_2.
  • Song, Z. L., and C. Zhang. 2015. Anaerobic digestion of pretreated wheat straw with cattle manure and analysis of the microbial community. Bioresource Technology 186:128–35. doi: 10.1016/j.biortech.2015.03.028.
  • Spielmeyer, A., B. Breier, K. Groißmeier, and G. Hamscher. 2015. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation. Bioresource Technology 193:307–14. doi: 10.1016/j.biortech.2015.06.081.
  • Sui, Q., X. Meng, R. Wang, J. Zhang, D. Yu, M. Chen, Y. Wang, and Y. Wei. 2018. Effects of endogenous inhibitors on the evolution of antibiotic resistance genes during high solid anaerobic digestion of swine manure. Bioresource Technology 270:328–36. doi: 10.1016/j.biortech.2018.09.043.
  • Talbot, G., C. S. Roy, E. Topp, L. Martin, M. L. Kalmokoff, S. P. J. Brooks, C. Beaulieu, M. Palin, and D. I. Massé. 2010. Spatial distribution of some microbial trophic groups in a plug-flow-type anaerobic bioreactor treating swine manure. Water Science and Technology: A Journal of the International Association on Water Pollution Research 61 (5):1147–55. doi: 10.2166/wst.2010.014.
  • Taleghani, A. H., T. Lim, C. Lin, A. C. Ericsson, and P. H. Vo. 2020. Degradation of Veterinary antibiotics in swine manure via anaerobic digestion. Bioengineering (Basel, Switzerland) 7 (4):123. doi: 10.3390/bioengineering7040123.
  • Van Epps, A., and L. Blaney. 2016. Antibiotic residues in animal waste: Occurrence and degradation in conventional agricultural waste management practices. Current Pollution Reports 2 (3):135–55. doi: 10.1007/s40726-016-0037-1.
  • Visca, A., A. B. Caracciolo, P. Grenni, L. Patrolecco, J. Rauseo, G. Massini, V. M. Miritana, and F. Spataro. 2021. Anaerobic digestion and removal of sulfamethoxazole, enrofloxacin, ciprofloxacin and their antibiotic resistance genes in a full-scale biogas plant. Antibiotics (Basel, Switzerland)10 (5):502. doi: 10.3390/antibiotics10050502.
  • Walters, W., E. R. Hyde, D. Berg-Lyons, G. Ackermann, G. Humphrey, A. Parada, J. A. Gilbert, J. K. Jansson, J. G. Caporaso, J. A. Fuhrman, et al. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1 (1):e00009-15. doi: 10.1128/mSystems.00009-15.
  • Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73 (16):5261–7. doi: 10.1128/aem.00062-07.
  • Widyasari-Mehta, A., H. R. K. A. Suwito, and R. Kreuzig. 2016. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage. Chemosphere 149:154–60. doi: 10.1016/j.chemosphere.2016.01.094.
  • World Health Organization. 2018. Critically important antimicrobials for human medicine. Ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use.
  • Wu, Q., D. Zou, X. Zheng, F. Liu, L. Li, and Z. Xiao. 2022. Effects of antibiotics on anaerobic digestion of sewage sludge: performance of anaerobic digestion and structure of the microbial community. The Science of the Total Environment 845:157384. doi: 10.1016/j.scitotenv.2022.157384.
  • Xiao, L., Y. Wang, E. Lichtfouse, Z. Li, P. S. Kumar, J. Liu, D. Feng, Q. Yang, and F. Liu. 2020. Effect of antibiotics on the microbial efficiency of anaerobic digestion of wastewater: a review. Frontiers in Microbiology 11:611613. doi: 10.3389/fmicb.2020.611613.
  • Yilmaz, P., L. W. Parfrey, P. Yarza, J. Gerken, E. Pruesse, C. Quast, T. Schweer, J. Peplies, W. Ludwig, and F. O. Glöckner. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research 42 (Database issue):D643–D648. doi: 10.1093/nar/gkt1209.
  • Yin, F., H. Dong, C. Ji, X. Tao, and Y. Chen. 2016. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure. Waste Management (New York, N.Y.)56:540–6. doi: 10.1016/j.wasman.2016.07.020.
  • Zhao, L., Y. H. Dong, and H. Wang. 2010. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. The Science of the Total Environment 408 (5):1069–75. doi: 10.1016/j.scitotenv.2009.11.014.
  • Zhi, S., and K. Zhang. 2019. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion. Chemical Engineering Journal and the Biochemical Engineering Journal. 359:1303–15. doi: 10.1016/j.cej.2018.11.050.
  • Zhi, S., Q. Li, F. Yang, Z. Yang, and K. Zhang. 2019. How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion. Bioresource Technology 283:286–96. doi: 10.1016/j.biortech.2019.03.083.
  • Ziganshina, E. E., D. E. Belostotskiy, O. N. Ilinskaya, E. A. Boulygina, T. V. Grigoryeva, and A. M. Ziganshin. 2015. Effect of the organic loading rate increase and the presence of zeolite on microbial community composition and process stability during anaerobic digestion of chicken wastes. Microbial Ecology 70 (4):948–60. doi: 10.1007/s00248-015-0635-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.