0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioremediation of complex contaminated Yamuna River India by using selected cyanobacteria

, &

References

  • Ahmad, I. Z. 2022. The usage of cyanobacteria in wastewater treatment: Prospects and limitations. Letters in Applied Microbiology 75 (4):718–30. doi: 10.1111/lam.13587.
  • Ahmad, J., S. Naeem, M. Ahmad, A. R. Usman, and M. I. Al-Wabel. 2019. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. Journal of Environmental Management 246:214–28. doi: 10.1016/j.jenvman.2019.05.152.
  • Al-Dahhan, M. H., F. H. Al-Ani, and A. J. O. Al-Saned. 2018. Biodegradation of phenolic components in wastewater by microalgae: A review.
  • Allen, M. M., and R. Y. Stanier. 1968. Growth and division of some unicellular blue-green algae. Journal of General Microbiology 51 (2):199–202. doi: 10.1099/00221287-51-2-199.
  • Anderson, R. A. 2005. Algal culturing techniques. New York, USA: Elsevier Academic Press.
  • Ankit, K.B, and J. Korstad,. 2022. Phycoremediation: Use of algae to sequester heavy metals. Hydrobiology 1(3):288–303. doi: 10.3390/hydrobiology1030021.
  • American Public Health Association (APHA). 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC: American Public Health Association.
  • Ardila, L., R. Godoy, and L. Montenegro. 2017. Sorption capacity measurement of Chlorella vulgaris and Scenedesmus acutus to remove chromium from tannery wastewater. IOP Conference Series: Earth and Environmental Science 83 (1):012031. doi: 10.1088/1755-1315/83/1/012031.
  • Atoku, D. I., O. Z. Ojekunle, A. M. Taiwo, and O. B. Shittu. 2021. Evaluating the efficiency of Nostoc commune, Oscillatoria limosa, and Chlorella vulgaris in a phycoremediation of heavy metals contaminated industrial wastewater. Scientific African 12: E00817. doi: 10.1016/j.sciaf.2021.e00817.
  • Bag, P., P. Ansolia, S. K. Mandotra, and A. K. Bajhaiya. 2019. Potential of blue-green algae in wastewater treatment. In Application of microalgae in wastewater treatment, 363–81. Cham: Springer.
  • Benemann, J. R., J. C. Weissman, B. L. Koopman, and W. J. Oswald. 1977. Energy production by microbial photosynthesis. Nature 268 (5615):19–23. doi: 10.1038/268019a0.
  • Bernal, C., G. Vázquez, I. Barceló Quintal, and A. Laure Bussy. 2008. Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water, Air, and Soil Pollution 190 (1-4):259–70. doi: 10.1007/s11270-007-9598-3.
  • Bhardwaj, R., A. Gupta, and J. K. Garg. 2017. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch. Water Science 31 (1):52–66. doi: 10.1016/j.wsj.2017.02.002.
  • Bhattacharya, A., P. Dey, D. Gola, A. Mishra, A. Malik, and N. Patel. 2015. Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environmental Monitoring and Assessment 187 (1):4146. doi: 10.1007/s10661-014-4146-2.
  • Bibak, M., M. Sattari, and S. Tahmasebi. 2024. Investigation of biosorption capacity of algae: Selection of most efficient biosorbent for metal removal. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 94 (1):217–26. doi: 10.1007/s40011-023-01524-w.
  • Central Pollution Control Board. 2013. (CPCB New Delhi India), material on plastic waste management.
  • Cepoi, L., I. Zinicovscaia, A. Valuta, L. Codreanu, L. Rudi, T. Chiriac, N. Yushin, D. Grozdov, and A. Peshkova. 2021. Bioremediation capacity of edaphic cyanobacteria Nostoc linckia for chromium in association with other heavy-metals-contaminated soils. Environments 9 (1):1. doi: 10.3390/environments9010001.
  • Chakdar, H., and S. Pabbi. 2012. Extraction and purification of Phycoerythrin from Anabaena variabilis (CCC421). Phykos 42 (1):25–31.
  • Connor, R., A. Renata, C. Ortigara, E. Koncagül, S. Uhlenbrook, B. M. Lamizana-Diallo, et al. 2017. The United Nations world water development report 2017. Wastewater: The untapped resource The United Nations World Water Development Report.
  • CPCB. 2016. Annual report 2015–16. http://cpcb.nic.in/openpdfle.php?id=UmVwb3J0RmlsZXMvNjE0XzE1MjYzMDE0ODhfbWVkaWFwaG90bzEyMzg3LnBk Zg.
  • Craggs, R. J., T. J. Lundquist, and J. R. Benemann. 2012. Wastewater treatment and algal biofuel production. In Algae for biofuels and energy, 153–63. Dordrecht: Springer Netherlands.
  • Cuellar-Bermudez, S. P., I. Aguilar-Hernandez, D. L. Cardenas-Chavez, N. Ornelas-Soto, M. A. Romero-Ogawa, and R. Parra-Saldivar. 2015. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microbial Biotechnology 8 (2):190–209. doi: 10.1111/1751-7915.12167.
  • Cuellar-Bermudez, S. P., G. S. Aleman-Nava, R. Chandra, J. S. Garcia-Perez, J. R. Contreras-Angulo, G. Markou, K. Muylaert, B. E. Rittmann, and R. Parra-Saldivar. 2017. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research 24:438–49. doi: 10.1016/j.algal.2016.08.018.
  • de Souza, D. S., R. C. Valadão, A. L. Nascentes, L. D. B. da Silva, and H. V. de Mendonça. 2022. Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation. Acta Scientiarum. Technology 44: E58806–e58806. doi: 10.4025/actascitechnol.v44i1.58806.
  • Dey, I., and R. Pal. 2023. Cost-effective tannery wastewater treatment using cyanobacteria: Insights on the growth pattern and seedling vigor improvement with spent biomass. 3 Biotech 13 (9):295. doi: 10.1007/s13205-023-03712-x.
  • Ebtesam, E-B. 2008. Treatment of mixed domestic–industrial wastewater using cyanobacteria. Journal of Industrial Microbiology and Biotechnology 35:1503–16.
  • El-Sheekh, M. M., A. A. Farghl, H. R. Galal, and H. S. Bayoumi. 2016. Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27 (2):401–10. doi: 10.1007/s12210-015-0495-1.
  • Gani, K. M., and A. A. Kazmi. 2016. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. The Science of the Total Environment 569–570:661–71. doi: 10.1016/j.scitotenv.2016.06.182.
  • Geremia, E., M. Ripa, C. M. Catone, and S. Ulgiati. 2021. A review about microalgae wastewater treatment for bioremediation and biomass production—A new challenge for Europe. Environments 8 (12):136. doi: 10.3390/environments8120136.
  • Idenyi, J. N., E. G. Nwoba, J. C. Ogbonna, and B. E. Ubi. 2021. Biomass production and biochemical composition of two locally-isolated filamentous cyanobacteria, Oscillatoria and Phormidium spp. at different growth temperatures. EBSU Journal of Nature 3 (3):63–77.
  • IIT Delhi. 2016. Drainage master plan for NCT of Delhi, draft fnal report. http://www.delhi.gov.in/wps/wcm/ connect/e738330040aa42c7b022f10d0d3667b7/DM P.pdf?MO D=AJPERES&lmod=1099605968&CACHEID=e738330040aa 42c7b022f10d0d3667b7.
  • Iqbal, J., A. Javed, and M. A. Baig. 2022. Heavy metals removal from dumpsite leachate by algae and cyanobacteria. Bioremediation Journal 26 (1):31–40. doi: 10.1080/10889868.2021.1884530.
  • Kakade, A., E.-S. Salama, H. Han, Y. Zheng, S. Kulshrestha, M. Jalalah, F. A. Harraz, S. A. Alsareii, and X. Li. 2021. World eutrophic pollution of lake and river: Biotreatment potential and future perspectives. Environmental Technology & Innovation 23:101604. doi: 10.1016/j.eti.2021.101604.
  • Kaloudas, D., N. Pavlova, and R. Penchovsky. 2021. Phycoremediation of wastewater by microalgae: A review. Environmental Chemistry Letters 19 (4):2905–20. doi: 10.1007/s10311-021-01203-0.
  • Khazi, M. I., Z. Demirel, and M. C. Dalay. 2018. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. Journal of Applied Phycology 30 (3):1513–23. doi: 10.1007/s10811-018-1398-1.
  • Kobir, M. M., M. S. Ali, S. Ahmed, S. I. Sadia, and M. A. Alam. 2024. Assessment of the physicochemical characteristic of wastewater in Kushtia and Jhenaidah Municipal Areas Bangladesh: A Study of DO, BOD, COD, TDS and MPI. Asian Journal of Geological Research 7 (1):21–30.
  • Kshirsagar, A. D. 2013. Bioremediation of wastewater by using microalgae: An experimental study. International Journal of Life Science Biotechnology and Pharma Research 2 (3):339–46.
  • Kumar, D., and D. Sahoo. 2024. Assessment of physiochemical parameters and bioremediation of complex contaminated Yamuna River, India: An algal-based approach. Water, Air, & Soil Pollution 235 (2):90. doi: 10.1007/s11270-023-06867-8.
  • Kumar, D., S. Agrawal, and D. Sahoo. 2023a. Assessment of the intrinsic bioremediation capacity of a complexly contaminated Yamuna River of India: An algae-specific approach. International Journal of Phytoremediation 25 (13):1844–58. doi: 10.1080/15226514.2023.2200862.
  • Kumar, D., S. Agrawal, and D. Sahoo. 2023b. Environmental contamination by heavy metals and assessing the impact of inhabitant microalgae in bioremediation: A case study of urban water of Yamuna River, India. Urban Water Journal 21 (3):308–22. doi: 10.1080/1573062X.2023.2288869.
  • Levasseur, M., P. A. Thompson, and P. J. Harrison. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources 1. Journal of Phycology 29 (5):587–95. doi: 10.1111/j.0022-3646.1993.00587.x.
  • Li, Y., W. Zhou, B. Hu, M. Min, P. Chen, and R. R. Ruan. 2011b. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology 102 (23):10861–7. doi: 10.1016/j.biortech.2011.09.064.
  • Li, H., Y. Pan, Z. Wang, S. Chen, R. Guo, and J. Chen. 2015. An algal process treatment combined with the fenton reaction for high concentrations of amoxicillin and cefradine. RSC Advances 5 (122):100775–82. doi: 10.1039/C5RA21508K.
  • Liu, J., Y. Wu, C. Wu, K. Muylaert, W. Vyverman, H.-Q. Yu, R. Muñoz, and B. Rittmann. 2017. Advanced ∼ nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology 241:1127–37. doi: 10.1016/j.biortech.2017.06.054.
  • Lunk, H.-J. 2015. Discovery, properties, and applications ofchromium and its compounds. ChemTexts 1 (1):6. doi: 10.1007/s40828-015-0007-z.
  • Megharaj, M., S. Avudainayagam, and R. Naidu. 2003. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology 47 (1):51–4. doi: 10.1007/s00284-002-3889-0.
  • Min, M., L. Wang, Y. Li, M. J. Mohr, B. Hu, W. Zhou, P. Chen, and R. Ruan. 2011. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied Biochemistry and Biotechnology 165 (1):123–37. doi: 10.1007/s12010-011-9238-7.
  • Mittal, R., S. Said, and M. Beg. 2023. Assessment of changes in planform morphology of the upper Yamuna River Segment, India, using remote sensing and GIS. Physical Geography 44 (4):446–77. doi: 10.1080/02723646.2022.2090656.
  • Mutiyar, P. K., and A. K. Mittal. 2014. Occurrences and fate of selected human antibiotics in infuents and efuents of sewage treatment plant and efuent receiving river Yamuna in Delhi (India). Environmental Monitoring and Assessment 186 (1):541–57. doi: 10.1007/s10661-013-3398-6.
  • Nehra, P., B. S. Saharan, C. Gupta, and D. Kumar. 2020. Physiological Attributes of Selected Cyanobacterial Strains Isolated from Paddy Fields of Western UP.
  • Parameswari, E. 2009. Effect of pretreatment of blue green algal biomass on bio adsorption of chromium and nickel. India - Journal of Algal Biomass Utilization 1 (1):9–17.
  • Parween, M., A. L. Ramanathan, and N. J. Raju. 2017. Wastewater management and water quality of river Yamuna in the megacity of Delhi. International Journal of Environmental Science and Technology 14 (10):2109–24. doi: 10.1007/s13762-017-1280-8.
  • Patil, P. N., D. V. Sawant, and R. N. Deshmukh. 2012. Physico-chemical parameters for testing of water–a review. International Journal of Environmental Sciences 3 (3):1194–207.
  • Plöhn, M., O. Spain, S. Sirin, M. Silva, C. Escudero-Oñate, L. Ferrando-Climent, Y. Allahverdiyeva, and C. Funk. 2021. "Wastewater treatment by microalgae. Physiologia Plantarum 173 (2):568–78. doi: 10.1111/ppl.13427.
  • Prasanna, R., R. N. Singh, M. Joshi, K. Madhan, R. K. Pal, and L. Nain. 2011. Monitoring the bio fertilizing potential and establishment of inoculated cyanobacteria in soil using physiological and molecular markers. Journal of Applied Phycology 23 (2):301–8. doi: 10.1007/s10811-010-9571-1.
  • Prajapati, S. K., P. Kaushik, A. Malik, and V. K. Vijay. 2013. Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresource Technology 135:232–8. doi: 10.1016/j.biortech.2012.08.069.
  • Qun, W., H. Zhiquan, L. Genbao, X. Bo, S. Hao, and T. Meiping. 2008. Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Frontiers of Environmental Science & Engineering 2:446–51.
  • Rashid, N., M. S. U. Rehman, M. Sadiq, T. Mahmood, and J. I. Han. 2014. Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews 40:760–78. doi: 10.1016/j.rser.2014.07.104.
  • Rawat, I., R. R. Kumar, T. Mutanda, and F. Bux. 2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy 88 (10):3411–24. doi: 10.1016/j.apenergy.2010.11.025.
  • Rawat, I., R. R. Kumar, T. Mutanda, and F. Bux. 2013. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy 103:444–67. doi: 10.1016/j.apenergy.2012.10.004.
  • Renuka, N., A. Sood, R. Prasanna, and A. S. Ahluwalia. 2015. Phycoremediation of wastewaters: A synergistic approach using microalgae for bioremediation and biomass generation. International Journal of Environmental Science and Technology 12 (4):1443–60. doi: 10.1007/s13762-014-0700-2.
  • Renuka, N., A. Sood, R. Prasanna, and A. S. Ahluwalia. 2014. Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. South African Journal of Botany 90:137–45. doi: 10.1016/j.sajb.2013.10.017.
  • Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111 (1):1–61. doi: 10.1099/00221287-111-1-1.
  • Rusten, B., and A. K. Sahu. 2011. Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Science and Technology: A Journal of the International Association on Water Pollution Research 64 (6):1195–201. doi: 10.2166/wst.2011.722.
  • Ryckebosch, E., S. P. C. Bermúdez, R. Termote-Verhalle, C. Bruneel, K. Muylaert, R. Parra-Saldivar, and I. Foubert. 2014. Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. Journal of Applied Phycology 26 (3):1501–10. doi: 10.1007/s10811-013-0189-y.
  • Serpa, R., and A. Calderón. 2006. Effect of different nitrogen sources on the carotenoid and chlorophyll content of four peruvian strains of Dunaliella Salina teod. EcologíaAplicada 5 (1,2):93–9.
  • Shahi, K. A., B. E. Kavusi, Z. Dehghanian, J. Pandey, B. Asgari Lajayer, G. W. Price, and T. Astatkie. 2023. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environmental Science and Pollution Research International 30 (55):116538–66. doi: 10.1007/s11356-022-21283-x.
  • Singh, D. 2011. Diversity analysis of cyanobacteria from aquatic bodies. Proceedings of the Indian National Science Academy 77:351–71.
  • Sato, T., M. Qadir, S. Yamamoto, T. Endo, and A. Zahoor. 2013. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agricultural Water Management 130:1–13. doi: 10.1016/j.agwat.2013.08.007.
  • Tyagi, R. S., S. K. Singh, and P. K. Goyal. 2024. Interceptor sewer for abatement of pollution in surface water. Water Practice & Technology 19 (2):532–45. doi: 10.2166/wpt.2024.005.
  • Umamah, M., N. Sadaf, N. N. A. Khan, A. Mufti, I. Farooqi, M. A. Khan, M. Gauhar, K. Ali, S. Gautam, A. S. Khan, and R. Dhupper. 2023. Impact of COVID-19 on Yamuna River water quality: Possible ways to rejuvenate the riverine ecosystem in national capital of India. Ecological Questions, 35(2):1–14. doi: 10.12775/EQ.2024.015.
  • Vaid, M., K. Sarma, P. Kala, and A. Gupta. 2022. The plight of Najafgarh drain in NCT of Delhi, India: Assessment of the sources, statistical water quality evaluation, and fate of water pollutants. Environmental Science and Pollution Research International 29 (60):90580–600. doi: 10.1007/s11356-022-21710-z.
  • Verma, N., G. Singh, and N. Ahsan. 2023. Assessment of spatiotemporal variations in water quality of the urban river reach, Yamuna, Delhi. Water, Air, & Soil Pollution 234 (9):571. doi: 10.1007/s11270-023-06569-1.
  • Vonshak, A. 1986. Handbook for algal mass culture. Laboratory techniques for the culturing of microalgae.
  • Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, and R. Ruan. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from
  • Warjri, S. M., and M. B. Syiem. 2018. Analysis of biosorption parameters, equilibrium isotherms and thermodynamic studies of chromium (VI) uptake by a Nostoc sp. isolated from a coal mining site in Meghalaya, India. Mine Water and the Environment 37 (4):713–23. doi: 10.1007/s10230-018-0523-3.
  • Yadav, S., G. B. Anam, and Y. H. Ahn. 2022. Comparative growth characteristics and interspecific competitive interaction of two cyanobacteria,. Journal of Environmental Quality 51 (1):78–89. doi: 10.1002/jeq2.20305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.