440
Views
4
CrossRef citations to date
0
Altmetric
Curriculum and Instruction

Embedding online, design-focused data visualization instruction in an upper-division undergraduate atmospheric science course

ORCID Icon, ORCID Icon, &
Pages 168-183 | Received 22 Jan 2018, Accepted 12 Aug 2019, Published online: 30 Sep 2019

References

  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Science education. Drawing to learn in science. Science (New York, N.Y.), 333(6046), 1096–1097. doi:10.1126/science.1204153
  • Benson, N., Collin, C., Grand, V., Lazyan, M., Ginsburg, J., & Weeks, M. (2012). The psychology book: Big ideas simply explained. New York, NY: DK Publishing.
  • Black, A. A. (2005). Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402–414. doi:10.5408/1089-9995-53.4.402
  • Cairo, A. (2014). Ethical infographics. IRE Journal, 37, 25–27.
  • Campbell, K., Overeem, I., & Berline, M. (2013). Taking it to the streets: The case for modeling in the geosciences undergraduate curriculum. Computers & Geosciences, 53, 123–128. doi:10.1016/j.cageo.2011.09.006
  • Cano, M. J., Chacón-Vera, E., & Esquembre, F. (2015). Bringing partial differential equations to life for students. European Journal of Physics, 36(3), 035026. Article 035004. doi:10.1088/0143-0807/36/3/035026
  • Cheng, C., Guy, M., Narduzzo, A., & Takashina, K. (2015). The Leidenfrost maze. European Journal of Physics, 36(3), Article 035004. doi:10.1088/0143-0807/36/3/035004
  • Computational & Information Systems Laboratory. (2012). Yellowstone: IBM iDataPlex System. Wyoming: NCAR Alliance. Retrieved from http://n2t.net/ark:/85065/d7wd3xhc.
  • Course Evaluation Committee. (2013). Course evaluation committee report: Stanford University. Retrieved from https://vptl.stanford.edu/sites/default/files/cec_report_dec_18_1.pdf.
  • Craig, J. L., Lerner, N., & Poe, M. (2008). Innovation across the curriculum: Three case studies in teaching science and engineering communication. IEEE Transactions on Professional Communication, 51(3), 280–301.
  • Crider, A. (2015). Teaching visual literacy in the astronomy classroom. New Directions for Teaching and Learning, 2015(141), 7–18. doi:10.1002/tl.20118
  • Dollahon, C. (2017). Using STEAM in marine science: Incorporating graphic design into an existing STEM lesson. In J. Bazler & M. Van Sickle (Eds.), Cases on STEAM education in practice (pp. 292–317). Hershey, PA: IGI Global.
  • Donovan, S. (2008). Big data: Teaching must evolve to keep up with advances. Nature, 455(7212), 461. doi:10.1038/455461d
  • Edens, K. M., & Potter, E. (2003). Using descriptive drawings as a conceptual change strategy in elementary science. School Science and Mathematics, 103(3), 135–144.
  • Ellwein, A. L., Hartley, L. M., Donovan, S., & Billick, I. (2014). Using rich context and data exploration to improve engagement with climate data and data literacy: Bringing a field station into the college classroom. Journal of Geoscience Education, 62(4), 578–586. doi:10.5408/13-034
  • Ernst, J. V., & Clark, A. C. (2007). Scientific and technical visualization in technology education. The Technology Teacher, 66(8), 16–20.
  • Fox, P., & Hendler, J. (2011). Changing the equation on scientific data visualization. Science, 331(6018), 705–708. doi:10.1126/science.1197654
  • Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95–105. doi:10.1016/j.iheduc.2004.02.001
  • Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J.K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Dordrecht, Netherlands: Springer Netherlands.
  • Gilbert, J. K. (2010). Preface. In L. Phillips, S. Norris, & J. Macnab (Eds.), Visualization in mathematics, reading and science education (pp. v–vii). London: Springer.
  • Giloi, S., & Du Toit, P. (2013). Current approaches to the assessment of graphic design in a higher education context. International Journal of Art & Design Education, 32(2), 256–268. doi:10.1111/j.1476-8070.2013.01758.x
  • Gordin, D. N., & Pea, R. D. (1995). Prospects for scientific visualization as an educational technology. The Journal of the Learning Sciences, 4(3), 249–279.
  • Harold, J., Lorenzoni, I., Shipley, T. F., & Coventry, K. R. (2016). Cognitive and psychological science insights to improve climate change data visualization. Nature Climate Change, 6(12), 1080–1089. doi:10.1038/nclimate3162
  • Henry, R., Mavis, B., Sleight, D., & J, W. No date. Program Evaluation Tutorial | OMERAD | College of Human Medicine | Michigan State University. Retrieved from http://ormerad.msu.edu/meded/progeval/index.html.
  • Hepworth, K. J., & Canon, C. (2018). Improving science students’ data visualizations: A STEAM-based approach. Dialectic, 2(1), 49–78. doi:10.3998/dialectic.14932326.0002.104
  • Higgins, N., Baslie, R., Van Hecke, S., Zissman, J., & Gilkeson, S. (2017). Data visualization methods for transportation agencies. Washington, D.C.: The National Academies Press.
  • Hill, M., Sharma, M. D., & Johnston, H. (2015). How online learning modules can improve the representational fluency and conceptual understanding of university physics students. European Journal of Physics, 36(4), 045019–045020. doi:10.1088/0143-0807/36/4/045019
  • Iwasa, J. H. (2016). The scientist as illustrator. Trends in Immunology, 37(4), 247–250. doi:10.1016/j.it.2016.02.002
  • Jacobs, C. T., Gorman, G. J., Rees, H. W., & Craig, L. E. (2016). Experiences with efficient methodologies for teaching computer programming to geoscientists. Journal of Geoscience Education, 64(3), 183–198. doi:10.5408/15-101.1
  • Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., & Yoo, T. S. (2006). NIH-NSF visualization research challenges report. Los Alamitos, CA: IEEE Computer Society. doi:10.1109/MCG.2006.44
  • Kastens, K. A., & Manduca, C. A. (2012). Fostering knowledge integration in geoscience education. In K. A. Kastens & C. A. Manduca (Eds.), Earth and mind II: A synthesis of research on thinking and learning in the geosciences (pp. 183–206). Boulder, CO: Geological Society of America.
  • Kohnle, A., Douglass, M., Edwards, T. J., Gillies, A. D., Hooley, C. A., & Sinclair, B. D. (2010). Developing and evaluating animations for teaching quantum mechanics concepts. European Journal of Physics, 31(6), 1441–1455.
  • Kostelnick, C. (2013). Teaching students to design rhetorically: A low-tech process approach. In E.R. Brumberger & K.M. Northcut (Eds.), Designing texts teaching visual communication (pp. 265–281). New York, NY: Baywood Publishing Company Inc.
  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J.K. Gilbert (Ed.), Visualization in science education (pp. 121–145). Dordrecht, Netherlands: Springer Netherlands.
  • Krause, K. (2017). A framework for visual communication at Nature. Public Understanding of Science, 26(1), 15–24. doi:10.1177/0963662516640966
  • Langen, T. A., Mourad, T., Grant, B. W., Gram, W. K., Abraham, B. J., Fernandez, D. S., … Hampton, S. E. (2014). Using large public datasets in the undergraduate ecology classroom. Frontiers in Ecology and the Environment, 12(6), 362–363. doi:10.1890/1540-9295-12.6.362
  • Lesh, R., Middleton, J. A., Caylor, E., & Gupta, S. (2008). A science need: Designing tasks to engage students in modeling complex data. Educational Studies in Mathematics, 68(2), 113–130. doi:10.1007/s10649-008-9118-4
  • Libarkin, J. C., & Brick, C. (2002). Research methodologies in science education: Visualization and the geosciences. Journal of Geoscience Education, 50(4), 449–455. doi:10.5408/1089-9995-50.4.449
  • Maeda, J. (2013). STEM + Art = STEAM. STEAM, 1(1), 34. Article doi:10.5642/steam.201301.34
  • Makri, A. (2017). Give the public the tools to trust scientists. Nature, 541(7637), 261doi:10.1038/541261a
  • Marshman, E., & Singh, C. (2016). Interactive tutorial to improve student understanding of single photon experiments involving a Mach-Zehnder interferometer. European Journal of Physics, 37(2), 024001. Article 024001. doi:10.1088/0143-0807/37/2/024001
  • Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83(1), 33–54. doi:10.1002/(SICI)1098-237X(199901)83:1<33::AID-SCE2>3.0.CO;2-Z
  • McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513.
  • Mellody, M. (2015). Training students to extract value from big data: Summary of a workshop, Washington, D.C.: National Academies Press.
  • Merhar, V. K., Planinsic, G., & Cepic, M. (2009). Sketching graphs—an efficient way of probing students’ conceptions. European Journal of Physics, 30(1), 163–175.
  • Moere, A. V., & Purchase, H. (2011). On the role of design in information visualization. Information Visualization, 10(4), 356–371. doi:10.1177/1473871611415996
  • Monmonier, M. (1991). How to lie with maps. Chicago, IL: University of Chicago Press.
  • Paxton, M., Frith, V., Kelly-Laubscher, R., Muna, N., & van der Merwe, M. (2017). Supporting the teaching of the visual literacies in the earth and life sciences in higher education. Higher Education Research & Development, 36(6), 1264–1279. doi:10.1080/07294360.2017.1300139
  • Peterlin, P. (2010). Data analysis and graphing in an introductory physics laboratory: Spreadsheet versus statistics suite. European Journal of Physics, 31(4), 919–931. doi:10.1088/0143-0807/31/4/021
  • Reynolds, S. J., Johnson, J. K., Piburn, M. D., Leedy, D. E., Coyan, J. A., & Busch, M. M. (2005). Visualization in undergraduate geology courses. In J. K. Gilbert (Ed.), Visualization in science education (pp. 253–266). Dordrecht, Netherlands: Springer Netherlands.
  • Rodríguez Estrada, F. C., & Davis, L. S. (2015). Improving visual communication of science through the incorporation of graphic design theories and practices into science communication. Science Communication, 37(1), 140–148. doi:10.1177/1075547014562914
  • Royster, S. (2013). Working with big data. Occupational Outlook Quarterly, 57(3), 2–10.
  • Shoresh, N., & Wong, B. (2012). Points of view: Data exploration. Nature Methods, 9(1), 5
  • Sit, S. M., & Brudzinski, M. R. (2017). Creation and assessment of an active e-learning introductory geology course. Journal of Science Education and Technology, 26(6), 629–645. doi:10.1007/s10956-017-9703-3
  • Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., … Powers, J. G. (2008). A description of the Advanced Research WRF Version 3. (NCAR Technical Note). Retrieved from https://doi.org/10.5065/D68S4MVH.
  • Smith, K. M. (2013). Assessment as a barrier in developing design expertise: Interior design student perceptions of meanings and sources of grades. International Journal of Art & Design Education, 32, 203–214. doi:10.1111/j.1476-8070.2013.01746.x
  • Stephens, E. M., Edwards, T. L., & Demeritt, D. (2012). Communicating probabilistic information from climate model ensembles — lessons from numerical weather prediction. Wiley Interdisciplinary Reviews: Climate Change, 3(5), 409–426. doi:10.1002/wcc.187
  • Stofer, K. A. (2016). When a picture isn’t worth 1000 words: Learners struggle to find meaning in data visualizations. Journal of Geoscience Education, 64(3), 231–241. doi:10.5408/14-053.1
  • Titus, S., & Horseman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57(4), 242–254. doi:10.5408/1.3559671
  • Trumbo, J. (1999). Visual literacy and science communication. Science Communication, 20(4), 409–425. doi:10.1177/1075547099020004004
  • Tyler, A. C. (2006). Shaping belief: The role of audience in visual communication. In A. Bennett (Ed.), Design studies: Theory and research in graphic design (pp. 36–49). New York, NY: Princeton Architectural Press.
  • UC Berkeley Center for Teaching and Learning. (2017). Course evaluations question bank [database]. Retrieved from http://teaching.berkeley.edu/course-evaluations-question-bank.
  • Valle, M. (2013). Visualization: A cognition amplifier. International Journal of Quantum Chemistry, 113(17), 2040–2052. doi:10.1002/qua.24480
  • van der Veen, J. (2012). Draw your physics homework? Art as a path to understanding in physics teaching. American Educational Research Journal, 49(2), 356–407.
  • Wong, B. (2010). Points of view: Color coding. Nature Methods, 7(8), 573.
  • Wong, B. (2011). Points of view: The design process. Nature Methods, 8(12), 987.
  • Wong, B. (2012). Visualizing biological data: Data visualization is increasingly important, but it requires clear objectives and improved implementation. Nature Methods, 9(12), 1131. doi:10.1038/nmeth.2258
  • Wong, B., & Kjaegaard, R. S. (2012). Points of view: Pencil and paper. Nature Methods, 9(11), 1037.
  • Yoon, S. Y., & Min, K.-H. (2016). College students’ performance in an introductory atmospheric science course: Associations with spatial ability. Meteorological Applications, 23(3), 409–419. doi:10.1002/met.1565
  • Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations?. Journal of Research in Science Teaching, 48(10), 1177–1198. doi:10.1002/tea.20443
  • Zuza, K., Garmendia, M., Barragués, J.-I., & Guisasola, J. (2016). Exercises are problems too: Implications for teaching problem-solving in introductory physics courses. European Journal of Physics, 37(5). Article, 055703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.