449
Views
24
CrossRef citations to date
0
Altmetric
Articles

Effect of MQL and nanofluid on the machinability aspects of hardened alloy steel

, , &

References

  • Amini, S.; Khakbaz, H.; Barani, A. (2015) Improvement of near-dry machining and its effect on tool wear in turning of AISI 4142. Materials and Manufacturing Processes, 30(2): 241–247.
  • Amrita, M.; Shariq, S.A.; Manoj.; Gopal, C. (2014a) Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process. Procedia Engineering, 97: 115–124.
  • Amrita, M.; Srikant, R.R.; Sitaramaraju, A.V. (2014b) Performance evaluation of nanographite-based cutting fluid in machining process. Materials and Manufacturing Processes, 29(5): 600–605.
  • Dhar, N.R.; Kamruzzaman, M.; Ahmed, M. (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172(2): 299–304.
  • Diniz, A.; Ferreira, J.; Filho, F. (2003) Influence of refrigeration/lubrication condition on SAE 52100 hardened steel turning at several cutting speeds. International Journal of Machine Tools and Manufacture, 43(3): 317–326.
  • Eltaggaz, A.; Hegab, H.; Deiab, I.; Kishawy, H.A. (2018) Hybrid nano-fluid-minimum quantity lubrication strategy for machining austempered ductile iron (ADI). International Journal on Interactive Design and Manufacturing doi:10.1007/s12008-018-0491-7
  • Eltaggaz, A.; Zawada, P.; Hegab, H.A.; Deiab, I.; Kishawy, H.A. (2017) Coolant strategy influence on tool life and surface roughness when machining ADI. The International Journal of Advanced Manufacturing Technology, 94(9-12): 3875–3887.
  • Ganesan, K.; Naresh Babu, M.; Santhanakumar, M.; Muthukrishnan, N. (2018) Experimental investigation of copper nanofluid based minimum quantity lubrication in turning of H 11 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3). doi:10.1007/s40430-018-1093-9
  • Hegab, H.; Kishawy, H. (2018) Towards sustainable machining of inconel 718 using nano-fluid minimum quantity lubrication. Journal of Manufacturing and Materials Processing, 2(3): 50.
  • Hegab, H.; Darras, B.; Kishawy, H.A. (2018a) Sustainability assessment of machining with nano-cutting fluids. Procedia Manufacturing, 26: 245–254.
  • Hegab, H.; Kishawy, H.A.; Gadallah, M.H.; Umer, U.; Deiab, I. (2018b) On machining of Ti-6Al-4V Using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. The International Journal of Advanced Manufacturing Technology, 97(5-8): 1593–1603.
  • Hegab, H.; Kishawy, H.A.; Umer, U.; Mohany, A. (2019) A model for machining with nano-additives based minimum quantity lubrication. The International Journal of Advanced Manufacturing Technology, 102(5-8): 2013. doi:10.1007/s00170-019-03294-0
  • Hegab, H.; Umer, U.; Deiab, I.; Kishawy, H. (2018c) Performance evaluation of Ti–6Al–4V machining using nano-cutting fluids under minimum quantity lubrication. The International Journal of Advanced Manufacturing Technology, 95(9-12): 4229–4241.
  • Hegab, H.; Umer, U.; Soliman, M.; Kishawy, H.A. (2018d) Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. The International Journal of Advanced Manufacturing Technology, 96(9-12): 3449–3458.
  • Khan, A.; Maity, K. (2018) Influence of cutting speed and cooling method on the machinability of commercially pure titanium (CP-Ti) Grade II. Journal of Manufacturing Processes, 31: 650–661.
  • Khajehzadeh, M.; Moradpour, J.; Razfar, M.R. (2018) Influence of nanofluids application on contact length during hard turning. Materials and Manufacturing Processes, 34(1): 9. doi:10.1080/10426914.2018.1532091
  • Khalilpourazary, S.; Meshkat, S.S. (2014) Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process. The International Journal of Advanced Manufacturing Technology, 71(9-12): 1599–1610.
  • Kumar, R.; Sahoo, A.K.; Mishra, P.C.; Das, R.K. (2019) Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining. Measurement, 13: 913–917.
  • Kuzu, A.T.; Bijanzad, A.; Bakkal, M. (2015) Experimental investigations of machinability in the turning of compacted graphite iron using minimum quantity lubrication. Machining Science and Technology, 19(4): 559–576.
  • Mia, M.; Dhar, N.R. (2016a) Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network. Measurement, 92: 464–474.
  • Mia, M.; Dhar, N.R. (2016b) Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology, 88(1-4): 739–753.
  • Mia, M.; Dhar, N.R. (2017) Prediction and optimization by Using SVR, RSM and GA in hard turning of tempered AISI 1060 Steel under effective cooling condition. Neural Computing and Applications, 1–22. doi:10.1007/s00521-017-3192-4
  • Mia, M.; Dey, P.R.; Hossain, M.S.; Arafat, M.T.; Asaduzzaman, M.; Shoriat Ullah, M.; Tareq Zobaer, S.M. (2018a) Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement, 122: 380–391.
  • Mia, M.; Gupta, M.K.; Singh, G.; Królczyk, G.; Pimenov, D.Y. (2018b) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. Journal of Cleaner Production, 187: 1069–1081.
  • Mia, M.; Khan, M.A.; Dhar, N.R. (2016) High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: Investigations on surface roughness and tool wear. The International Journal of Advanced Manufacturing Technology, 90(5-8): 1825–1834.
  • Mia, M.; Morshed, M.S.; Kharshiduzzaman, M.; Razi, M.H.; Mostafa, M.R.; Rahman, S.M.S.; Ahmad, I.; Hafiz, M.T.; Kamal, A.M. (2018c) Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. Measurement, 118: 43–51.
  • Mia, M.; Razi, M.H.; Ahmad, I.; Mostafa, R.; Rahman, S.M.S.; Ahmed, D.H.; Dey, P.R.; Dhar, N.R. (2017) Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network. The International Journal of Advanced Manufacturing Technology, 91(9-12): 3211–3223.
  • Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. (2014) Investigating the Optimum Molybdenum Disulfide (MoS2) Nanolubrication parameters in CNC milling of AL6061-T6 alloy. The International Journal of Advanced Manufacturing Technology, 70(5-8): 1143–1155.
  • Saravanakumar, N.; Prabu, L.; Karthik, M.; Rajamanickam, A. (2014) Experimental analysis on cutting fluid dispersed with silver nano particles. Journal of Mechanical Science and Technology, 28(2): 645–651.
  • Sharma, A.K.; Tiwari, A.K.; Dixit, A.R.; Singh, R.K. (2017) Investigation into performance of SiO 2 nanoparticle based cutting fluid in machining process. Materials Today: Proceedings, 4(2): 133–141.
  • Shen, B.; Shih, A.J.; Tung, S.C. (2008) Application of nanofluids in minimum quantity lubrication grinding. Tribology Transactions, 51(6): 730–737.
  • Soković, M.; Mijanović, K. (2001) Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. Journal of Materials Processing Technology, 109(1-2): 181–189.
  • Sreejith, P.; Ngoi, B.K. (2000) Dry machining: machining of the future. Journal of Materials Processing Technology, 101(1-3): 287–291.
  • Su, Y.; Gong, L.; Li, B.; Liu, Z.; Chen, D. (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. The International Journal of Advanced Manufacturing Technology, 83(9-12): 2083–2089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.