248
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of roughness, topography, microhardness, white layer and surface chemical composition in high speed milling of Ti-6Al-4V using minimum quantity lubrication

, , &

References

  • Alam, S.; Nurul Amin, A.K.M.; Patwari, A.U. (2010) Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh.
  • Aspinwall, D.; Dewes, R.; Mantle, A. (2005) The machining of γ-TiAl intermetallic alloys. CIRP Annals, 54(1): 99–104. doi:10.1016/S0007-8506(07)60059-6
  • ASTM Standard (2017) E384-17: Standard Test Method for Microindentation Hardness of Materials. American Society for Testing of Materials (ASTM), International West Conshohocken, PA.
  • Bandapalli, C.; Sutaria, B.M.; Bhatt, D.V.; Singh, K.K. (2017) Experimental investigation and estimation of surface roughness using ANN, GMDH & MRA models in high speed micro end milling of titanium alloy (grade-5). Materials Today: Proceedings, 4(2): 1019–1028. doi:10.1016/j.matpr.2017.01.115
  • Coupard, D.; Girot, F.; List, G.; Nouari, M. (2003) Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear, 255(7–12): 1359–1368. doi:10.1016/S0043-1648(03)00105-4
  • Davim, J. P. (2010) Surface Integrity in Machining. London: Springer.
  • Davim, J. P. (2011) Machining of Hard Materials. London: Springer.
  • Davim, J. P. (2014) Machining of Titanium Alloys. London: Springer.
  • Dewes, R.; Ng, E.; Chua, K.; Newton, P.; Aspinwall, D. (1999) Temperature measurement when high speed machining hardened mould/die steel. Journal of Materials Processing Technology, 92–93: 293–301. doi:10.1016/S0924-0136(99)00116-8
  • Duan, C.; Kong, W.; Hao, Q.; Zhou, F. (2013) Modeling of white layer thickness in high speed machining of hardened steel based on phase transformation mechanism. The International Journal of Advanced Manufacturing Technology, 69(1–4): 59–70. doi:10.1007/s00170-013-5005-y
  • Ekinovic, S.; Dolinsek, S.; Jawahir, I. (2004) Some observations of the chip formation process and the white layer formation in high speed milling of hardened steel. Machining Science and Technology, 8(2): 327–340. doi:10.1081/MST-200029250
  • Grzesik, W. (2008) Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications. Amsterdam: Elsevier.
  • Hashimoto, F.; Guo, Y.; Warren, A. (2006) Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Annals, 55(1): 81–84. doi:10.1016/S0007-8506(07)60371-0
  • Hughes, J.; Sharman, A.; Ridgway, K. (2004) The effect of tool edge preparation on tool life and workpiece surface integrity. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(9): 1113–1123. doi:10.1243/0954405041897086
  • Klocke, F.; Brinksmeier, E.; Weinert, K. (2005) Capability profile of hard cutting and grinding processes. CIRP Annals, 54(2): 22–45. doi:10.1016/S0007-8506(07)60018-3
  • Kofstad, P.; Anderson, P.; Krudtaa, O. (1961) Oxidation of titanium in the temperature range 800–1200 °C. Journal of the Less Common Metals, 3(2): 89–97. doi:10.1016/0022-5088(61)90001-7
  • Kolahdouz, S.; Hadi, M.; Arezoo, B.; Zamani, S. (2015) Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions. Procedia CIRP, 26: 367–372. doi:10.1016/j.procir.2014.08.016
  • Liao, Y.; Lin, H. (2007) Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. International Journal of Machine Tools and Manufacture, 47(11): 1660–1666. doi:10.1016/j.ijmachtools.2007.01.007
  • López de Lacalle, L.N.; Angulo, C.; Lamikiz, A.; Sánchez, J.A. (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. Journal of Materials Processing Technology, 172(1): 11–15. doi:10.1016/j.jmatprotec.2005.08.014
  • Moussaoui, K.; Mousseigne, M.; Senatore, J.; Chieragatti, R.; Monies, F. (2013) Influence of milling on surface integrity of Ti6Al4V—study of the metallurgical characteristics: microstructure and microhardness. The International Journal of Advanced Manufacturing Technology, 67(5–8): 1477–1489. doi:10.1007/s00170-012-4582-5
  • Pawar, R.; Raju, P. (2012) International Conference on Trends in Industrial and Mechanical Engineering (ICTIME’2012), 190–199.
  • Rasti, A.; Sadeghi, M.H.; Farshi, S.S. (2019) An investigation into the effect of surface integrity on the fatigue failure of AISI 4340 steel in different drilling strategies. Engineering Failure Analysis, 95: 66–81. doi:10.1016/j.engfailanal.2018.08.022
  • Saini, S.; Ahuja, I.S.; Sharma, V.S. (2012) Residual stresses, surface roughness, and tool wear in hard turning: a comprehensive review. Materials and Manufacturing Processes, 27(6): 583–598. doi:10.1080/10426914.2011.585505
  • Schwach, D.W.; Guo, Y. (2005) Feasibility of producing optimal surface integrity by process design in hard turning. Materials Science and Engineering: A, 395(1–2): 116–123. doi:10.1016/j.msea.2004.12.012
  • Su, H.; Liu, P.; Fu, Y.; Xu, J. (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chinese Journal of Aeronautics, 25(5): 784–790. doi:10.1016/S1000-9361(11)60445-7
  • Sun, J.; Guo, Y. (2009) A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 209(8): 4036–4042. doi:10.1016/j.jmatprotec.2008.09.022
  • Thakur, D.; Ramamoorthy, B.; Vijayaraghavan, L. (2009) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials & Design, 30(5): 1718–1725. doi:10.1016/j.matdes.2008.07.011
  • Toh, C. (2003) Surface topography analysis when high-speed rough milling hardened steel. Materials and Manufacturing Processes, 18(6): 849–862. doi:10.1081/AMP-120025074
  • Trent, E.M.; Wright, P.K. (2000) Metal Cutting. Boston: Butterworth-Heinemann.
  • Ulutan, D.; Ozel, T. (2011) Machining induced surface integrity in titanium and nickel alloys: a review. International Journal of Machine Tools and Manufacture, 51(3): 250–280. doi:10.1016/j.ijmachtools.2010.11.003
  • Umbrello, D. (2013) Analysis of the white layers formed during machining of hardened AISI 52100 steel under dry and cryogenic cooling conditions. The International Journal of Advanced Manufacturing Technology, 64(5–8): 633–642. doi:10.1007/s00170-012-4073-8
  • Umbrello, D.; Jayal, A.; Caruso, S.; Dillon, O.; Jawahir, I. (2010) Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel. Machining Science and Technology, 14(1): 128–147. doi:10.1080/10910340903586525
  • Velásquez, J.P.; Bolle, B.; Chevrier, P.; Tidu, A. (2006) Surface Integrity in High Speed Machining of Alloy. Dordrecht: Springer, 87–95.
  • Wang, F.; Zhao, J.; Li, A.; Zhao, J. (2014) Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. Machining Science and Technology, 18(3): 448–463. doi:10.1080/10910344.2014.926690
  • Wu, D.X.; Yao, C.F.; Tan, L.; Ren, J.X.; Zhang, D.H. (2013) Experimental study on surface integrity in high-speed end milling of titanium alloy TB6. Applied Mechanics and Materials, 328: 867–871. doi:10.4028/www.scientific.net/AMM.328.867
  • Yao, C.; Wu, D.; Jin, Q.; Huang, X.; Ren, J.; Zhang, D. (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Transactions of Nonferrous Metals Society of China, 23(3): 650–660. doi:10.1016/S1003-6326(13)62512-1
  • Yao, C.-F.; Tan, L.; Ren, J.-X.; Lin, Q.; Liang, Y.-S. (2014) Surface integrity and fatigue behavior for high-speed milling Ti–10V–2Fe–3Al titanium alloy. Journal of Failure Analysis and Prevention, 14(1): 102–112. doi:10.1007/s11668-013-9772-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.