654
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of standoff distance and traverse speed on the cutting quality during the abrasive water jet machining (AWJM) of brass

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akkurt, A. (2010) Cut front geometry characterization in cutting applications of brass with abrasive water jet. Journal of Materials Engineering and Performance, 19(4): 599–606. doi:10.1007/s11665-009-9513-8
  • Anu Kuttan, A.; Rajesh, R.; Dev Anand, M. (2021) Abrasive water jet machining techniques and parameters: a state of the art, open issue challenges, and research directions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(4): 220. doi:10.1007/s40430-021-02898-6
  • Aurich, J.C.; Kirsch, B.; Setti, D.; Axinte, D.; Beaucamp, A.; Butler-Smith, P.; Yamaguchi, H. (2019) Abrasive processes for micro parts and structures. CIRP Annals, 68(2): 653–676. doi:10.1016/j.cirp.2019.05.006
  • Babu, M.N.; Muthukrishnan, N. (2018) Exploration on kerf-angle and surface roughness in abrasive water jet machining using response surface method. Journal of the Institution of Engineers (India): Series C, 99(6): 645–656. doi:10.1007/s40032-017-0366-x
  • Balaji, K.; Siva Kumar, M.; Yuvaraj, N. (2021) Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel. Applied Soft Computing, 102: 107075. Retrieved from doi:10.1016/j.asoc.2020.107075
  • Bhavani, B.G.; Yoga, G.P.M.; Sundaram, M.; Ramasubramania, A.K.B.; Mariappan, S.K.; Sundarajan, L.R.; Rajagopalan, V. (2018) An experimental study on deep hole machining in brass using abrasive water jet machine. International Journal of Modern Manufacturing Technologies, X1: 27–36.
  • Bhoi, N.K.; Singh, H.; Pratap, S. (2020) Strategies for controlling the accuracy and reliability of abrasive water jet machining. In Reliability and Risk Assessment in Engineering. Lecture Notes in Mechanical Engineering, V. Gupta, P. Varde, P. Kankar, N. Joshi (Eds.), Singapore: Springer. doi:10.1007/978-981-15-3746-2_13
  • Dumbhare, A.P.; Dubey, S.; Deshpande, V.Y.; Andhare, A.B.; Barve, P.S. (2018) Modeling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(5): 259. doi:10.1007/s40430-018-1186-5
  • Fuse, K.; Chaudhari, R.; Vora, J.; Patel, V.K.; de Lacalle, L.N.L. (2021) Multi-response optimization of abrasive water jet machining of Ti6Al4V using integrated approach of utilized heat transfer search algorithm and RSM. Materials, 14(24): 7746. https://www.mdpi.com/1996-1944/14/24/7746 doi:10.3390/ma14247746
  • Gupta, K. (2020) On productivity of abrasive water jet machining for miniature gear manufacturing. Paper presented at the Institute of Physics Conference Series: Materials Science and Engineering.
  • Iyer, N.P.; Arunkumar, N. (2022) Investigation of abrasive water jet machining parameters of bismaleimide composites. Materials and Manufacturing Processes, 37(14): 1642–1651. Retrieved from doi:10.1080/10426914.2022.2032145
  • Joel, C.; Jeyapoovan, T.; Praneeth Kumar, P. (2021a) Experimentation and optimization of cutting parameters of abrasive jet cutting on AA6082 through response surface methodology. Materials Today: Proceedings, 44: 3564–3570. doi:10.1016/j.matpr.2020.09.452
  • Joel, C.; Joel, L.; Muthukumaran, S.; Matilda Shanthini, P. (2021b) Parametric optimization of abrasive water jet machining of C360 brass using MOTLBO. Materials Today: Proceedings, 37: 1905–1910. Retrieved from doi:10.1016/j.matpr.2020.07.471
  • Kartal, F.; Yerlikaya, Z.; Gökkaya, H. (2017) Effects of machining parameters on surface roughness and macro surface characteristics when the machining of Al-6082 T6 alloy using AWJT. Measurement, 95: 216–222. doi:10.1016/j.measurement.2016.10.007
  • Kumar Pal, V.; Choudhury, S.K. (2014) Fabrication and analysis of micro-pillars by abrasive water jet machining. Procedia Materials Science, 6: 61–71. doi:10.1016/j.mspro.2014.07.008
  • Kumar, R.S.; Gajendran, S.; Kesavan, R. (2018) Estimation of optimal process parameters for abrasive water jet machining of marble using multi response techniques. Materials Today: Proceedings, 5(5): 11208–11218. doi:10.1016/j.matpr.2018.01.145
  • Kumar, V.; Das, P.P.; Chakraborty, S. (2020) Grey-fuzzy method-based parametric analysis of abrasive water jet machining on GFRP composites. Sādhanā, 45(1): 106. doi:10.1007/s12046-020-01355-9
  • Llanto, J.M.; Tolouei-Rad, M.; Vafadar, A.; Aamir, M. (2021) Recent progress trend on abrasive water jet cutting of metallic materials: A review. Applied Sciences, 11(8): 3344. https://www.mdpi.com/2076-3417/11/8/3344 doi:10.3390/app11083344
  • Madankar, A.; Dumbhare, P.; Deshpande, Y.V.; Andhare, A.B.; Barve, P.S. (2021) Estimation and control of surface quality and traverse speed in abrasive water jet machining of AISI 1030 steel using different work-piece thicknesses by RSM. Australian Journal of Mechanical Engineering, 21(2): 518–525. doi:10.1080/14484846.2021.1876600
  • Madhu, S.; Balasubramanian, M. (2018) Impact of nozzle design on surface roughness of abrasivejet machined glass fibre reinforced polymer composites. Silicon, 10(6): 2453–2462. doi:10.1007/s12633-018-9777-4
  • Mahalingam, S.; Kuppusamy, B.; Natarajan, Y. (2021) Multi-objective soft computing approaches to evaluate the performance of abrasive water jet drilling parameters on die steel. Arabian Journal for Science and Engineering, 46(8): 7893–7907. doi:10.1007/s13369-021-05591-x
  • Marichamy, S.; Ravichandran, M.; Stalin, B.; Babu, S.B. (2019) Optimization of abrasive water jet machining parameters for α-β brass using taguchi methodology. FME Transactions, 47(1): 116–121. doi:10.5937/fmet1901116M
  • Nader, A.J.; Saad, K.S. (2021) Influence of Abrasive Water Jet (AWJ) on surface roughness. International Journal of Engineering Materials and Manufacture, 6(3): 132–140. doi:10.26776/ijemm.06.03.2021.04
  • Nair, A.; Kumanan, S. (2018) Optimization of size and form characteristics using multi-objective grey analysis in abrasive water jet drilling of inconel 617. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3): 121. doi:10.1007/s40430-018-1042-7
  • Natarajan, Y.; Murugesan, P.K.; Mohan, M.; Liyakath Ali Khan, S.A. (2020) Abrasive water jet machining process: a state of the art of review. Journal of Manufacturing Processes, 49: 271–322. doi:10.1016/j.jmapro.2019.11.030
  • Niranjan, C.A.; Srinivas, S.; Ramachandra, M. (2018) Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy in abrasive water jet cutting. Journal of Magnesium and Alloys, 6(4): 366–374. doi:10.1016/j.jma.2018.07.001
  • Phokane, T.; Gupta, K.; Gupta, M.K. (2017) Investigations on surface roughness and tribology of miniature brass gears manufactured by abrasive water jet machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22): 4193–4202. doi:10.1177/0954406217747913
  • Prasad, K.S.; Chaitanya, G. (2017) A review on current research trends in abrasive water jet machining. International Research Journal of Engineering and Technology, 4: 3264–3270.
  • Radovanovic, M. (2020) Multi-objective optimization of abrasive water jet cutting using MOGA. Procedia Manufacturing, 47: 781–787. doi:10.1016/j.promfg.2020.04.241
  • Schwartzentruber, J.; Spelt, J.K.; Papini, M. (2017) Prediction of surface roughness in abrasive water jet trimming of fiber reinforced polymer composites. International Journal of Machine Tools and Manufacture, 122: 1–17. doi:10.1016/j.ijmachtools.2017.05.007
  • Shanmugam, A.; Mohanraj, T.; Krishnamurthy, K.; Gur, A.K. (2021) Multi-response optimization on abrasive water jet machining of glass fiber reinforced plastics using taguchi method coupled with topsis. Surface Review and Letters, 28(12): 2150120. doi:10.1142/S0218625X21501201
  • Shukla, R.; Singh, D. (2017) Experimentation Investigation of abrasive water jet machining parameters using taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32: 167–183. doi:10.1016/j.swevo.2016.07.002
  • Srivastava, A.K.; Nag, A.; Dixit, A.R.; Scucka, J.; Hloch, S.; Klichová, D.; Hlaváček, P.; Tiwari, S. (2019) Hardness measurement of surfaces on hybrid metal matrix composite created by turning using an abrasive water jet and WED. Measurement, 131: 628–639. doi:10.1016/j.measurement.2018.09.026
  • Umapathy, V.; Bhavani, B.G. (2022) Pocket milling of AISI 1045 steel using abrasive water jet machining by varying contours. Revista de Chimie, 73(2): 62–74. doi:10.37358/RC.22.2.8520