108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of tool-chip contact length based on slip-line modeling of orthogonal cutting with rounded-edge cutting tools

ORCID Icon & ORCID Icon

References

  • Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. (2004) An investigation of the tool – chip contact length and wear in high-speed turning of EN19 steel. Proceedings of the Institution of Mechanical Engineers, Part B 218(8): 889–903. doi:10.1243/0954405041486064
  • Abuladze, N.G. (1962) Character and the length of tool–chip contact. In Proceedings of the Machinability of Heat-Resistant and Titanium Alloys, Mashinostroenie, Kuibyshev, Russia, 1962, 68–78.
  • Balaji, A.K.; Sreeram, G.; Jawahir, I.S.; Lenz, E. (1999) The effects of cutting tool thermal conductivity on tool-chip contact length and cyclic chip formation in machining with grooved tools. CIRP Annals 48(1): 33–38. doi:10.1016/S0007-8506(07)63126-6
  • Bi, X.F.; Sutter, G.; List, G.; Liu, Y.X. (2009) Influence of chip curl on tool-chip contact length in high speed machining. Materials Science Forum 626–627: 71–74. 10.4028/www.scientific.net/MSF.626-627.71
  • Boothroyd, G.; Bailey, J.A. (1966) Effects of strain rate and temperature in orthogonal metal cutting. Journal of Mechanical Engineering Science 8(3): 264–275. doi:10.1243/JMES_JOUR_1966 008_ 035_02 10.1243/JMES_JOUR_1966_008_035_02
  • Cheng, H.; Kejia, Z.; Jian, W.; Xiaoming, Z.; Han, D. (2019) Thermal-mechanical model for cutting with negative rake angle based on a modified slip-line field approach. International Journal of Mechanical Sciences 164: 167. doi:10.1016/j.ijmecsci.2019.105167
  • Cheng, H.; Kejia, Z.; Jian, W.; Xiaoming, Z.; Han, D. (2020) Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model. International Journal of Mechanical Sciences 167: 273. doi:10.1016/j.ijmecsci.2019.105273
  • Childs, T.; Maekawa, K.; Obikawa, T.; Yamane, Y. (2000) Metal Machining Theory and Applications. London: Arnold.
  • Dewhurst, P. (1978) On the non-uniqueness of the machining process. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 360:587–610. doi:10.1098/rspa.1978.0087
  • Dewhurst, P.; Collins, I.F. (1973) A matrix technique for constructing slip line field solutions to a class of plane strain plasticity problems. International Journal for Numerical Methods in Engineering 7(3): 357–378. doi:10.1002/nme.1620070312
  • Fang, N. (2002) Machining with tool–chip contact on the tool secondary rake face – Part I: A new slip-line model. International Journal of Mechanical Sciences 44(11): 2337–2354. doi:10.1016/S0020-7403(02)00185-6
  • Fang, N. (2003a) Slip-line modeling of machining with a rounded-edge tool – Part I: New model and theory. Journal of the Mechanics and Physics of Solids 51(4): 715–742. doi:10.1016/S0022-5096(02)00060-1
  • Fang, N. (2003b) Slip-line modeling of machining with a rounded-edge tool – Part II: Analysis of the size effect and the shear strain-rate. Journal of the Mechanics and Physics of Solids 51(4): 743–762. doi:10.1016/S0022-5096(02)00061-3
  • Fatima, A.; Mativenga, P.T. (2013) A review of tool–chip contact length models in machining and future direction for improvement. Proceedings of the Institution of Mechanical Engineers, Part B 227(3): 345–356. doi:10.1177/0954405412470047
  • Friedman, M.Y.; Lenz, E. (1970) Investigation of the tool – chip contact length in metal cutting. International Journal of Machine Tool Design and Research 10(4): 401–416. doi:10.1016/0020-7357(70)90001-6
  • Gad, G.S.; Armarego, E.J.A.; Smith, A.J.R. (1992) Tool-chip contact length in orthogonal machining and its importance in tool temperature predictions. International Journal of Production Research 30(3): 485–501. doi:10.1080/00207549208942907
  • Germain, D.; Fromentin, G.; Poulachon, G.; Breton, S.B. (2010) A force model for superfinish turning of copper with rounded edge tools at low feed rate. In 8th İnternational Conference on HSM, 26–28 May, Luxembourg, ENIM National School of Engineers of METZ.
  • Hahn, S.R.; Discussion To Shaw, M.C.; Cook, N.H.; Finnie, I. (1953) The shear angle relationship in metal cutting. Journal of Fluids Engineering75(2): 273–283. doi:10.1115/1.4015267
  • Iqbal, S.A.; Mativenga, P.T.; Sheikh, M.A. (2007) Characterization of the machining of AISI 1045 steel over a wide range of cutting speeds-Part 1: İnvestigation of contact phenomena. Proceedings of the Institution of Mechanical Engineers, Part B 221(5): 909–916. doi:10.1243/09544054JEM796
  • Iqbal, S.A.; Mativenga, P.T.; Sheikh, M.A. (2009) A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds. The International Journal of Advanced Manufacturing Technology 42(1–2): 30–40. doi:10.1007/s00170-008-1582-6
  • Jin, X.; Altintas, Y. (2011) Slip-line field model of micro-cutting process with round tool edge effect. Journal of Materials Processing Technology 211(3): 339–355. doi:10.1016/j.jmatprotec.2010.10.006
  • Kato, S.; Yamaguchi, K.; Yamada, M. (1972) Stress distribution at the interface between tool and chip in machining. Journal of Engineering for Industry 94(2): 683–689. doi:10.1115/1.3428229
  • Klushin, I.M. (1960) Determination of the contact zone between chip and rake face and the pressure in This Zone. Stanki I Instruments 31: 22–23.
  • Kudo, H. (1965) Some new slip-line solutions for two-dimensional steady-state machining. International Journal of Mechanical Sciences 7(1): 43–55. doi:10.1016/0020-7403(65)90084-6
  • Lee, E.H.; Shaffer, B.W. (1951) The theory of plasticity applied to a problem of machining. Journal of Applied Mechanics18(4): 405–413. 10.1115/1.4010357
  • Mackerle, J. (1999) Finite-element analysis and simulation of machining: A bibliography (1976–1996). Journal of Materials Processing Technology 86(1–3): 17–44. doi:10.1016/S0924-0136(98)00227-1
  • Maity, K.P.; Das, N.S. (2001a) A class of slipline field solutions for metal machining with coulomb friction at the chip-tool İnterface. Journal of Materials Processing Technology 116(2–3): 278–288. doi:10.1016/S0924-0136(01)01028-7
  • Maity, K.P.; Das, N.S. (2001b) A class of slipline field solutions for metal machining with slipping and sticking contact at the chip-tool İnterface. International Journal of Mechanical Sciences 43(10): 2435–2452. doi:10.1016/S0020-7403(01)00013-3
  • Marinov, V. (1999) The tool-dhip contact length in metal cutting. In 5th International Conference on Advance Engineering and Technology, AMTECH 99, Plovdiv, Bulgaria, 149–155.
  • Mathew, P; Oxley, P.L.B. (1980) Predicting the cutting conditions at which built-up edge disappears when machining plain carbon steels. CIRP Annals 29(1): 11–14. doi:10.1016/S0007-8506(07)61286-4
  • Morcos, W.A. (1980) A slip-line field solution of the free oblique continuous cutting problem in conditions of light friction at chip-tool interface. Journal of Engineering for Industry102(4): 310–314. doi:10.1115/1.3183870
  • Ojolo, S.J.; Awe, O. (2011) Investigation into the effect of tool-chip contact length on cutting stability. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2(4): 626–630.
  • Ozturk, S.; Altan, E. (2012a) Slip-line metal cutting model with negative rake angle. Journal of the Brazilian Society of Mechanical Sciences and Engineering 34(3): 246–252. doi:10.1590/S1678-58782012000300004
  • Ozturk, S.; Altan, E. (2012b) A slip-line approach to the machining with rounded-edge tool. The International Journal of Advanced Manufacturing Technology 63(5–8): 513–522. doi:10.1007/s00170-012-3941-6
  • Poletika, M.F. (1969) Contact Loads on Tool Faces (Russian). Moscow: Machinostronie.
  • Rubenstein, C. (1965) A simple theory of orthogonal cutting. International Journal of Machine Tool Design and Research 4(3): 123–156. doi:10.1016/0020-7357(65)90015-6
  • Sadik, M.I.; Lindström, B. (1993) The role of tool–chip contact length in metal cutting. Journal of Materials Processing Technology 37(1–4): 613–627. doi:10.1016/0924-0136(93)90122-M
  • Santos, A.J.D.; Bonfim, M.T.; Silva, L.R.R.D.; Silva, R.B.D.; Câmara, M.A.; Magalhães, F.D.C.; Abrão, A.M. (2023) Determination of the chip – tool contact length in orthogonal cutting. Journal of Tribology145(1): 011502. doi:10.1115/1.4055783
  • Shi, T.; Ramalingam, S. (1991) Slip-line solution for orthogonal cutting with a chip breaker and flank wear. International Journal of Mechanical Sciences 33(9): 689–704. doi:10.1016/0020-7403(91)90065-B
  • Stephenson, D.A.; Jen, T.C.; Lavine, A.S. (1997) Cutting tool temperatures in contour turning: Transient analysis and experimental verification. Journal of Manufacturing Science and Engineering 119(4A): 494–501. doi:10.1115/1.2831179
  • Storchak, M.; Drewle, K.; Menze, C.; Stehle, T.; Möhring, H.C. (2022) Determination of the tool–chip contact length for the cutting processes. Materials 15(9): 3264. doi:10.3390/ma15093264
  • Strenkowski, J.S.; Athavale, S.M. (1997) A partially constrained eulerian orthogonal cutting model for chip control tools. Journal of Manufacturing Science and Engineering 119(4B): 681–688. doi:10.1115/1.2836809
  • Sutter, G. (2005) Chip geometries during high-speed machining for orthogonal cutting conditions. International Journal of Machine Tools and Manufacture 45(6): 719–726. doi:10.1016/j.ijmac htools.2004.09.018 10.1016/j.ijmachtools.2004.09.018
  • Tay, A.O.; Stevenson, M.G.; Davis de Vahl, G.; Oxley, P.L.B. (1976) A numerical method for calculating temperature distribution in machining from force and shear angle measurement. International Journal of Machine Tool Design and Research 16(4): 335–349. doi:10.1016/0020-7357(76)90043-3
  • Toropov, A.; Ko, S.L. (2003) Prediction of tool–chip contact length using a new slip-line solution for orthogonal cutting. International Journal of Machine Tools and Manufacture 43(12): 1209–1215. doi:10.1016/S0890-6955(03)00155-X
  • Ucun, I.; Aslantas, K.; Karabulut, A. (2009) Investigation of variation in tool-chip contact length in orthogonal cutting process. Journal of the Faculty of Engineering and Architecture of Gazi University 24(3): 477–484.
  • Uysal, A.; Altan, E. (2016) Slip-line field modelling of rounded-edge cutting tool for orthogonal machining. Proceedings of the Institution of Mechanical Engineers, Part B 230(10): 1925–1941. doi:10.1177/0954405415577560
  • Woon, K.S.; Rahman, M.; Neo, K.S.; Liu, K. (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. International Journal of Machine Tools and Manufacture 48(12–13): 1395–1407. doi:10.1016/j.ijmachtools.2008.05.001.
  • Wu, Q. (2007) Serrated chip formation and tool-edge wear in high speed machining of advanced aerospace materials. Ph.D. diss., Utah State University, Logan, Utah.
  • Zadshakoyan, M.; Pourmostaghimi, V. (2013) Genetic equation for the prediction of tool–chip contact length in orthogonal cutting. Engineering Applications of Artificial Intelligence 26(7): 1725–1730. doi:10.1016/j.engappai.2012.10.016
  • Zhang, H.T.; Liu, P.D.; Hu, R.S. (1991) A three-zone model and solution of shear angle in orthogonal machining. Wear143(1): 29–43. doi:10.1016/0043-1648(91)90083-7
  • Zorev, N. (1966) Metal Cutting Mechanics. Oxford: Pergamon Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.