0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmed, W.; Hegab, H.; Mohany, A.; Kishawy, H. (2021) Analysis and optimization of machining hardened steel aisi 4140 with self-propelled rotary tools. Materials, 14(20): 6106. doi: 10.3390/ma14206106
  • Alajmi, M.S.; Almeshal, A.M. (2020) Predicting the tool wear of a drilling process using novel machine learning XGBoost-SDA. Materials, 13(21): 4952. doi: 10.3390/ma13214952
  • Almeida, U.S.; de Andrade Couto, A.; Mateus, G.F.A.; Duarte, W.R.; Pereira, I.C.; Guimarães, G.P. (2022) Stability lobe diagrams comparison of a milling tool using different data sets for the modal parameter’s estimation. Journal of Vibration Engineering & Technologies, 11(8): 4387–4393. doi: 10.1007/s42417-022-00821-4.
  • Al-Mejibli, I.S.; Alwan, J.K.; Hamed Abd, D. (2020) The effect of gamma value on support vector machine performance with different kernels. International Journal of Electrical and Computer Engineering (IJECE) 10(5): 5497. doi: 10.11591/ijece.v10i5.pp5497-5506
  • Aridhi, A.; Perard, T.; Valiorgue, F.; Courbon, C.; Rech, J.; Brosse, A.; Girinon, M.; Truffart, B.; Karaouni, H. (2023) Comparison of the CEL and ALE approaches for the simulation of orthogonal cutting of 15-5PH and 42CrMo4 materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 237(11): 1726–1736. doi: 10.1177/09544054221136390.
  • Bagga, P.J.; Makhesana, M.A.; Darji, P.P.; Patel, K.M.; Pimenov, D.Y.; Giasin, K.; Khanna, N. (2022) Tool life prognostics in CNC turning of AISI 4140 Steel using neural network based on computer vision. The International Journal of Advanced Manufacturing Technology, 123(9-10): 3553–3570. doi: 10.1007/s00170-022-10485-9
  • Barshilia, H.C.; Rajam, K.S. (2004) Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. Journal of Materials Research, 19(11): 3196–3205. doi: 10.1557/JMR.2004.0444
  • Boddu, J.R.; Kotaiah, K.R.; Chalapathi, P.V.; Shaik, J.H. (2023) Optimization of design for the high precision end mill spindles to improve stability of effective cutting process. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–9. doi: 10.1007/s12008-023-01526-y.
  • Boing, D.; José de Oliveira, A.; Schroeter, R.B. (2018) Limiting conditions for application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) coated cemented carbide grades in the turning of hardened steels. Wear, 416–417: 54–61. doi: 10.1016/j.wear.2018.10.007
  • Butt, M.M.; Ahmad Najar, K.; Dar, T.H. (2021) Experimental evaluation of multilayered CVD-and PVD-coated carbide turning inserts in severe machining of AISI-4340 steel alloy. Jurnal Tribologi, 29: 117–143.
  • Çelik, Y.H.; Kilickap, E.; Güney, M. (2017) Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V Using CVD and PVD coated tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6): 2085–2093. doi: 10.1007/s40430-016-0607-6
  • Chaturvedi, S.; Rajasekar, E.; Natarajan, S. (2020) Multi-objective building design optimization under operational uncertainties using the NSGA II algorithm. Buildings, 10(5): 88. doi: 10.3390/buildings10050088
  • Chen, Z.; Qian, L.; Cui, R.; Liu, J.; Zhang, Q. (2022) Machining-induced residual stress analysis and multi-objective optimization for milling process of Mg–Li Alloy. Measurement, 204: 112127. doi: 10.1016/j.measurement.2022.112127
  • Daicu, R.; Oancea, G. (2022) Methodology for measuring the cutting inserts wear. Symmetry, 14(3): 469. doi: 10.3390/sym14030469
  • Deb, K.; Jain, H. (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4): 577–601. doi: 10.1109/TEVC.2013.2281535
  • Dreiling, I.; Haug, A.; Holzschuh, H.; Chassé, T. (2009) Raman spectroscopy as a tool to study cubic Ti–C–N CVD coatings. Surface and Coatings Technology, 204(6-7): 1008–1012. doi: 10.1016/j.surfcoat.2009.05.029
  • Fedai, Y.; Kahraman, F.; Kirli Akin, H.; Gokhan, B. (2018) Optimization of machining parameters in face milling using multi-objective taguchi technique. Tehnički glasnik, 12(2): 104–108. doi: 10.31803/tg-20180201125123
  • Géron, A. (2019) Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, California, US: O’Reilly Media.
  • Gramlich, A.; Hinrichs, T.; Springer, H.; Krupp, U. (2023) Recycling-induced copper contamination of a 42CrMo4 quench and tempering steel: alterations in transformation behavior and mechanical properties. Steel Research international, 94(3): 2200623. doi: 10.1002/srin.202200623.
  • Grzesik, W.; Kruszynski, B.; Ruszaj, A. (2010) Surface integrity of machined surfaces. In Surface Integrity in Machining, 143–179. Berlin, Germany: Springer.
  • Hamiche, Y.; Zeroudi, N. (2023) Predicting cutting forces in 5-axis milling of sculptured surfaces directly from a CAM tool path. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238(5): 655–668. doi: 10.1177/09544054231180353.
  • Ho, N.X.; Le, T.-T.; Le, M.V. (2021) Development of artificial intelligence based model for the prediction of young’s modulus of polymer/carbon-nanotubes composites. Mechanics of Advanced Materials and Structures, 29(27): 5965–5978. doi: 10.1080/15376494.2021.1969709.
  • Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B. (2011) Optimizing building designs using a robustness indicator with respect to user behavior. Building Simulation Proceedings of the 12th Conference of the International Building Performance Simulation Association, 1710–1717.
  • Imad, M.; Kishawy, H.A.; Yussefian, N.Z.; Hosseini, A. (2022) Effect of cutting edge radius when milling hardened steels: a finite element analysis and surface integrity investigation. Machining Science and Technology, 26(4): 571–594. doi: 10.1080/10910344.2022.2129986.
  • Jain, H.; Deb, K. (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4): 602–622. doi: 10.1109/TEVC.2013.2281534
  • Jozić, S.; Vrsalović, L.; Bajić, D.; Gudić, S. (2022) Investigation of different cutting conditions in the machining of steel—towards cleaner production. Journal of Cleaner Production, 356(July): 131881. doi: 10.1016/j.jclepro.2022.131881.
  • Kara, F.; Aslantas, K.; Çiçek, A. (2015) ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Computing and Applications, 26(1): 237–250. doi: 10.1007/s00521-014-1721-y.
  • Kara, F.; Aslantaş, K.; Çiçek, A. (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38(January): 64–74. doi: 10.1016/j.asoc.2015.09.034.
  • Kelliger, T.; Meurer, M.; Bergs, T. (2023) Performance evaluation of additively manufactured and hybrid indexable milling tools in machining of AISI4140 + QT and Ti-6Al-4V. Journal of Engineering for Gas Turbines and Power 146(3): 1–9. doi: 10.1115/GT2023-100933.
  • Kuruc, M.; Vopát, T.; Peterka, J.; Necpal, M.; Šimna, V.; Milde, J.; Jurina, F. (2022) the influence of cutting parameters on plastic deformation and chip compression during the turning of C45 Medium carbon steel and 62SiMnCr4 tool steel. Materials, 15(2): 585. doi: 10.3390/ma15020585
  • Lawal, S.A.; Choudhury, I.A.; Nukman, Y. (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. International Journal of Machine Tools and Manufacture, 52(1): 1–12. doi: 10.1016/j.ijmachtools.2011.09.003
  • Le, T.-T.; Skentou, A.D.; Mamou, A.; Asteris, P.G. (2022) Correlating the unconfined compressive strength of rock with the compressional wave velocity effective porosity and schmidt hammer rebound number using artificial neural networks. Rock Mechanics and Rock Engineering, 55(11): 6805–6840. doi: 10.1007/s00603-022-02992-8.
  • Li, Y.; Zheng, G.; Zhang, X.; Cheng, X.; Yang, X.; Xu, R. (2019) Cutting force, tool wear and surface roughness in high-speed milling of high-strength steel with coated tools. Journal of Mechanical Science and Technology, 33(11): 5393–5398. doi: 10.1007/s12206-019-1033-3
  • Mauersberger, M.; Hauffe, A.; Hähnel, F.; Dexl, F.; Markmiller, J.F.C. (2023) Topology optimization of a benchmark artifact with target stress states using evolutionary algorithms. Engineering with Computers, 40(2): 1265–1288. doi: 10.1007/s00366-023-01860-5.
  • Nguyen, A.-T.; Nguyen, V.-H.; Le, T.-T.; Nguyen, N.-T. (2022) Multiobjective optimization of surface roughness and tool wear in high-speed milling of aa6061 by machine learning and NSGA-II. Advances in Materials Science and Engineering, 2022: 1–21. doi: 10.1155/2022/5406570
  • Nguyen, A.-T.; Nguyen, V.-H.; Le, T.-T.; Nguyen, N.-T. (2023) A hybridization of machine learning AND Nsga-Ii FOR multi-objective optimization of surface roughness AND cutting force IN Aisi 4340 alloy steel turning. Journal of Machine Engineering, 23(1): 133–153.
  • Nguyen, V.-H.; Le, T.-T.; Le, M.V.; Dao Minh, H.; Nguyen, A.-T. (2023) Multi-objective optimization based on machine learning and non-dominated sorting genetic algorithm for surface roughness and tool wear in Ti6Al4V turning. Machining Science and Technology, 27(4): 380–421. doi: 10.1080/10910344.2023.2235610
  • Nguyen, V.-H.; Le, T.-T.; Truong, H.-S.; Duong, H.T.; Le, M.V. (2023) Predicting volumetric error compensation for five-axis machine tool using machine learning. International Journal of Computer Integrated Manufacturing, 36(8): 1191–1218. doi: 10.1080/0951192X.2022.2163295.
  • Niu, Q.; Chen, M.; Ming, W.; An, Q. (2013) Evaluation of the performance of coated carbide tools in face milling TC6 Alloy under dry condition. The International Journal of Advanced Manufacturing Technology, 64(5-8): 623–631. doi: 10.1007/s00170-012-4043-1
  • Omole, S.; Dogan, H.; Lunt, A.J.G.; Kirk, S.; Shokrani, A. (2023) Using machine learning for cutting tool condition monitoring and prediction during machining of tungsten. International Journal of Computer Integrated Manufacturing, 37(6): 747–771. doi: 10.1080/0951192X.2023.2257648.
  • Pan, R.; Cheng, X.; Xie, Y.; Li, J.; Huang, W. (2024) Optimization of robotic polishing process parameters for mold steel based on artificial intelligence method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. doi: 10.1177/09544054231221959.
  • Pradhan, B. (2013) A Comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51(February): 350–365. doi: 10.1016/j.cageo.2012.08.023.
  • Qehaja, N.; Zhujani, F.; Abdullahu, F. (2018) Mathematical model determination for surface roughness during CNC end milling operation on 42CRM04 hardened steel. International Journal of Mechanical Engineering and Technology (IJMET), 9(1): 624–632.
  • Ramraj, S.; Nishant U.; Sunil, R.; Banerjee, S. (2016) Experimenting XGBoost algorithm for prediction and classification of different datasets. International Journal of Control Theory and Applications, 9: 651–662.
  • Regaieg, A.; Belguith, R.; Sai, L.; Bouzid, W. (2023) Geometric modeling of the rubbing zone limits in 3-axis ball-end milling. The International Journal of Advanced Manufacturing Technology, 125(11-12): 5557–5570. doi: 10.1007/s00170-023-11037-5.
  • Rubeo, M.A.; Schmitz, T.L. (2016) Milling force modeling: a comparison of two approaches. Procedia Manufacturing, 5: 90–105. doi: 10.1016/j.promfg.2016.08.010
  • Sadik, I.; Myrtveit, T. (2009) The performance of PVD coated grade in milling of ADI 800. World Academy of Science, Engineering and Technology, 29(1): 527–530.
  • Sayuti, M.; Sarhan, A.A.D.; Salem, F. (2014) Novel uses of SiO2 Nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. Journal of Cleaner Production, 67: 265–276. doi: 10.1016/j.jclepro.2013.12.052
  • Selvakumar S, J.; Raj. D, S. (2023) Machinability analysis during finish turning Ti6Al4V with varying cutting edge radius. Materials and Manufacturing Processes, 39(1): 144–160. doi: 10.1080/10426914.2023.2236192.
  • Sharma, S.; Kumar, V. (2022) A comprehensive review on multi-objective optimization techniques: past, present and future. Archives of Computational Methods in Engineering, 29(7): 5605–5633. doi: 10.1007/s11831-022-09778-9
  • Stipkovic, M.A.; Bordinassi, É.C.; Farias, A. d.; Delijaicov, S. (2017) Surface integrity analysis in machining of hardened AISI 4140 steel. Materials Research, 20(2): 387–394. doi: 10.1590/1980-5373-mr-2016-0420
  • Sultana, N.; Dhar, N.R. (2022) A critical review on the progress of MQL in machining hardened steels. Advances in Materials and Processing Technologies, 8(4): 3834–3858. doi: 10.1080/2374068X.2022.2036041.
  • Thakur, A.; Gangopadhyay, S. (2016) Dry machining of nickel-based super alloy as a sustainable alternative using TiN/TiAlN coated tool. Journal of Cleaner Production, 129: 256–268. doi: 10.1016/j.jclepro.2016.04.074
  • Unune, D.R.; Kumar Nirala, C.; Mali, H.S. (2018) ANN-NSGA-II dual approach for modeling and optimization in abrasive mixed electro discharge diamond grinding of monel K-500. Engineering Science and Technology, an International Journal, 21(3): 322–329. doi: 10.1016/j.jestch.2018.04.014
  • Ventura, C. E.H.; Chaves, H.S.; Campos Rubio, J.C.; Abrão, A.M.; Denkena, B.; Breidenstein, B. (2017) The influence of the cutting tool microgeometry on the machinability of hardened AISI 4140 steel. The International Journal of Advanced Manufacturing Technology, 90(9-12): 2557–2565. doi: 10.1007/s00170-016-9582-4
  • Wang, Z.; Lu, J.; Chen, C.; Ma, J.; Liao, X. (2022) Investigating the multi-objective optimization of quality and efficiency using deep reinforcement learning. Applied Intelligence, 52(11): 12873–12887. doi: 10.1007/s10489-022-03326-5
  • Wu, J.; Chen, X.-Y.; Hao, Z; Xiong, L.-D.; Lei, H.; Deng, S.-H.; (2019) Hyperparameter optimization for machine learning models based on bayesian optimization. Journal of Electronic Science and Technology, 17(1): 26–40.
  • Xie, N.; Zhou, J.; Zheng, B. (2018) Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality. Procedia CIRP, 72: 1469–1474. doi: 10.1016/j.procir.2018.03.099
  • Yadav, S.K.; Ghosh, S.; Sivanandam, A. (2024) An intelligent hybrid optimization approach to improve the end milling performance of incoloy 925 Based on ANN-NSGA-II-ETOPSIS. International Journal on Interactive Design and Manufacturing (IJIDeM), doi: 10.1007/s12008-024-01744-y.
  • Yang, S.H.; Natarajan, U. (2010) Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-ii approaches. The International Journal of Advanced Manufacturing Technology, 49(5-8): 773–784. doi: 10.1007/s00170-009-2404-1
  • Yeganefar, A.; Niknam, S.A.; Asadi, R. (2019) The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling. The International Journal of Advanced Manufacturing Technology, 105(1-4): 951–965. doi: 10.1007/s00170-019-04227-7.
  • Yousefi, S.; Zohoor, M. (2019) Effect of cutting parameters on the dimensional accuracy and surface finish in the hard turning of MDN250 steel with cubic boron nitride tool, for developing a knowledged base expert system. International Journal of Mechanical and Materials Engineering, 14(1): 1–13. doi: 10.1186/s40712-018-0097-7
  • Yuan, J.; Fox-Rabinovich, G.S.; Veldhuis, S.C. (2018) Control of tribofilm formation in dry machining of hardened AISI D2 steel by tuning the cutting speed. Wear, 402-403: 30–37. doi: 10.1016/j.wear.2018.01.015
  • Zhuang, K.; Gao, J.; Ye, T.; Dai, X. (2022) Effect of cutting edge radius on cutting force and surface roughness in machining of Ti-6Al-4V. Procedia CIRP, 108: 571–576. doi: 10.1016/j.procir.2022.03.090
  • Zöller, M.-A.; Huber, M.F. (2021) Benchmark and survey of automated machine learning frameworks. Journal of Artificial Intelligence Research, 70: 409–472. doi: 10.1613/jair.1.11854

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.