146
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of water content of natural gases using particle swarm optimization method

, , , &

References

  • Ahmadi, M. A. (2011). Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm. J. Pet. Explor. Prod. Technol. 1:99–106.
  • Ahmadi, M. A. (2012). Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fluid Phase Equilib. 314:46–51.
  • Ahmadi, M. A. (2015). Developing a robust surrogate model of chemical flooding based on the artificial neural network for enhanced oil recovery implications. Mathemat. Pet. Eng. 2015:706897.
  • Ahmadi, M. A., and Bahadori, A. (2015a). A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel 153:276–283.
  • Ahmadi, M. A., and Bahadori, A. (2015b). Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum 1:118–132.
  • Ahmadi, M. A., and Ebadi, M. (2014). Evolving smart approach for determination dew point pressure of condensate gas reservoirs. Fuel. 117:1074–1084.
  • Ahmadi, M. A., Ebadi, M., and Hosseini, S. M. (2014). Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel 117:579–589.
  • Ahmadi, M. A., Ebadi, M., Shokrollahi, A., and Majidi, S. M. J. (2013a). Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl. Soft Comput. 13:1085–1098.
  • Ahmadi, M. A., and Golshadi, M. (2012). Neural network based swarm concept for prediction asphaltene precipitation due to natural depletion. J. Pet. Sci. Eng. 98–99:40–49.
  • Ahmadi, M. A., Kashiwao, T., and Bahadori, A. (2015a). Prediction of oil production rate using vapor-extraction technique in heavy oil recovery operations, Pet. Sci. Technol. 33:1764–1769.
  • Ahmadi, M. A., Kashiwao, T., Rozyn, J., and Bahadori, A. (2016). Accurate prediction of properties of carbon dioxide for carbon capture and sequestration operations. Pet. Sci. Technol.
  • Ahmadi, M. A., and Pournik, M. (2015). A predictive model of chemical flooding for enhanced oil recovery purposes: application of least square support vector machine. Petroleum DOI:10.1016/j.petlm.2015.10.002.
  • Ahmadi, M. A., Pournik, M., and Shadizadeh, S. R. (2015b). Toward connectionist model for predicting bubble point pressure of crude oils: application of artificial intelligence. Petroleum 1:307–317.
  • Ahmadi, M. A., and Shadizadeh, S. R. (2012). New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel 102:716–723.
  • Ahmadi, M. A., Zahedzadeh, M., Shadizadeh, S. R., and Abassi, R. (2015c). Connectionist model for predicting minimum gas miscibility pressure: application to gas injection process. Fuel 148:202–211
  • Ahmadi, M. A., Zeinali Hasanvand, M., and Bahadori, A. (2015d). A LSSVM approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems. Int. J. Ambient Energy. Available at: http://dx.doi.org/10.1080/01430750.2015.1055515
  • Ahmadi, M. A., Zendehboudi, S., Dusseault, M., and Chatzis, I. (2015e). Evolving simple-to-use method to determine water-oil relative permeability in petroleum reservoirs. Petroleum DOI:10.1016/j.petlm.2015.07.008.
  • Ahmadi, M. A., Zendehboudi, S., Lohi, A., Elkamel, A., Chatzis, I. (2013b). Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys. Prospect. 61:582–598.
  • Bahadori, A. (2009). Document estimation of hydrate inhibitor loss in hydrocarbon liquid phase Pet. Sci. Technol. 27:943–951.
  • Bahadori, A., and Vuthaluru, H. B. (2009). Document simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems. Energy 34:1910–1916.
  • Bahadori, A., Vuthaluru, H. B., and Mokhatab, S. (2009). Method accurately predicts water content of natural gases. Energy Sources, Part A 31:754–760
  • Bahadori, A., Vuthaluru, H. B., Tadé, M. O., and Mokhatab, S. 2008. Predicting water-hydrocarbon systems mutual solubility. Authors of Chemical Engineering and Technology 31:1743–1747.
  • Carroll, J. J. (2002). The water content of acid gases and sour gas from 100°F to 220°F and pressures to 10,000 psia. 81st Annual GPA Convention, Dallas, T. X., March 11–13.
  • Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using particle swarm theory. Proc. Sixth Int. Symp. Micro Mach. Human Sci. 39–43.
  • Eberhart, R. C., Simpson, P. K., Dobbins, R., and Dobbins, R. W. (1996). Computational intelligence PC tools. San Diego, CA: Academic Press Professional.
  • Ghiasi, M. M., Esmaeili-Jaghdan, Z., Halali, M. A. Lee, M., Abbas, A., and Bahadori, A. (2015). Development of soft computing methods to predict moisture content of natural gases. J. Taiwan Institute of Chemical Engineers 55:36–41.
  • Hubbard, R. (1987). Recent developments in gas dehydration and hydrate inhibition. 2nd Technical Meeting of Gas Processors Association GCC Chapter, Bahrain, October 27.
  • Kennedy, J. (1997). The particle swarm: social adaptation of knowledge. Proc. IEEE Int. Conf. Evol. Comput. 303–308.
  • Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4:1942–1948.
  • Wichert, G. C., and Wichert, E. (2003). New charts provide accurate estimations for water content of sour natural gas. Oil Gas J. 101:64–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.