87
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic modeling and simulation of a batch biodesulfurization process by Rhodococcus erythropolis HN2

, &

References

  • Abbad-Andaloussi, S., C. Lagnel, M. Warzywoda, and F. Monot. 2003. Multicriteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enz. Microb. Technol. 32 (3/4):446–454. https://doi.org/10.1016/S0141-0229(02)00320-4
  • Alcon, A., V. E. Santos, A. B. Martin, P. Yustos, and F. Garcia-Ochoa. 2005. Biodesulfurization of DBT with pseudomonas putida CECT5279 by resting cells influence of cell growth time on reducing equivalent concentration and Hpac activity. Biochem. Eng. 26:168–175. https://doi.org/10.1016/j.bej.2005.04.013
  • Benson, H. J. 1994. Microbiological applications; 6th Ed.; McGraw-Hill Publisher; ISBN: 9780077302139.
  • Calzada, J., M. T. Zamarro, and A. Alcón. 2009. Analysis of dibenzothiophene desulfurization in a recombinant pseudomonas putida strain. Appl. Environ. Microbiol. 75 (3):875–877. https://doi.org/10.1128/AEM.01682-08
  • Castorena, G., C. Suarez, I. Valdez, G. Amador, L. Fernandez, and S. Le Borgne. 2002, Sulfur-selective desulfurization of DBT and diesel oil by newly isolated Rhodococcus sp. Strains. FEMS Microbiol. Lett. 215:157–161. https://doi.org/10.1111/j.1574-6968.2002.tb11385.x
  • Derikvand, P. and Z. Etemadifar. 2014. Improvement of biodesulfurization rate of alginate immobilized Rhodococcus erythropolis R1. Jundishapur Microbiol. 7 (3):e9123. DOI: 10.5812/jjm.9123.
  • Deriase, S. F. and N.Sh. El-Gendy. 2014. Mathematical correlation between microbial biomass and total viable count for different bacterial strains used in biotreatment of oil pollution. Biosci. Biotechnol. Res. Asia. 11:61–65.
  • Deriase, S. F., S. Younis, and N.Sh. El-Gendy. 2013. Kinetic evaluation and modeling for batch degradation of 2-hydroxybiphenyl and 2,2 ′-dihydroxybiphenyl by Corynebacterium variabilis Sh42, Desalin. Water Treat. 51(22-24):4719–4728. https://doi.org/10.1080/19443994.2012.744950
  • El-Gendy, N. Sh and J. Speight. 2016. Handbook of refinery desulfurization. CRC Press; Taylor and Francis Group; 6000 Broken Sound Parkway NW; Suite 300; Boca Raton; FL 33487-2742; USA.
  • El-Gendy, N.Sh., H. N. Nassar, and S. S. Abu-Amr. 2014. Factorial design and response surface optimization for enhancing a biodesulfurization process. Petro. Sci. Technol. 32:1669–1679. https://doi.org/10.1080/10916466.2014.892988
  • Folsom, B. R., D. R. Schieche, P. M. Digrazia, J. Werner, and S. Palmer. 1999. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl. Environ. Microbiol. 65:4967–4972.
  • Jia, X., J. Wen, Z. Sun, Q. Caiyin, and S. Xie. 2006. Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp WQ-01 and its mutant in oil–water dispersions. Chem. Eng. Sci. 61:1987–2000. https://doi.org/10.1016/j.ces.2005.10.045
  • Kilbane, J. J. and K. Jackowsky. 1992. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol. Bioeng. 40:1107–1114. https://doi.org/10.1002/bit.260400915
  • Kim, Y. J., J. H. Chang, K. S. Cho, H. W. Ryu, and Y. K. Chang. 2004. A physiological study on growth and dibenzothiophene desulfurization characteristics of Gordonia sp. CYKS1. Korean Chem. Eng. 21:436–441.
  • Konishi, J., Y. Ishii, T. Osaka, K. Okumura, and M. Suzuki. 1997. Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol 63 (8):3164–3169.
  • Lawrence, A. and P. L. McCarty. 1970. Unified basis for biological treatment design and operation. Sanit. Engrs. Div., ASCE. 96:757–778.
  • Luo, M. F., J. M. Xing, Z. X. Gou, S. Li, H. Z. Liu, and J. Y. Chen. 2003. Desulfurization of dibenzothiophene by lyophilized of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem. Eng. J. 13:1–6. https://doi.org/10.1016/S1369-703X(02)00078-5
  • Ma, T. 2010. The desulfurization pathway in Rhodococcus: In Biology of Rhodococcus, Microbiology Monographs Series; Edited by Alvarez HM. Springer – Verlag, Berlin Heidelberg. 16:207–230. doi:10.1007/978-3-642-12937-7_8.
  • Maghsoudi, S., M. Vossoughi, A. Kheirolomoom, E. Tanaka, and S. Katoh. 2001. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem. Eng. J. 8:151–156. https://doi.org/10.1016/S1369-703X(01)00097-3
  • Marquardt, A. W. 1963. An algorithm for least–squares estimation of non–linear parameters; Soc. Indus. Appl. Math. 11:431–441. https://doi.org/10.1137/0111030
  • Martin, A. B., A. Alcon, V. E. Santos, and F. Garcia-Ochoa. 2004. Production of a Biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization for different media composition. Energy Fuels. 18:851–857. https://doi.org/10.1021/ef030174c
  • Martínez, I., V. E. Santos, and G. O. Fèlix. 2017. Metabolic kinetic model for dibenzothiophene desulfurization through 4S pathway using intracellular compound concentrations. Biochem. Eng. 117:89–96.
  • Maass, D., D. Todescato, D. E. Moritz, J. V. Oliveira, D. Oliveira, A. A. Ulson de Souza, and S. M. Guelli Souza. 2015. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst Eng. 38:1447–1453.
  • Mohebali, G. and A. S. Ball. 2016. Biodesulfurization of diesel fuels p past, present and future perspectives. Int. Biodeter. Biodegrad. 110:163–180.
  • Monod, J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3:371–394.
  • Nassar, H. N. 2015: Development of biodesulfurization process for petroleum fractions using nano-immobilized catalyst; Ph.D. Degree. Cairo, Egypt: Al-Azhar University
  • Nassar, H. N., S. F. Deriase, and N. Sh. El-Gendy. 2017. Statistical optimization of biomass production and biodesulfurization activity of Rhodococcus erythropolis HN2. Petrol. Sci. Technol. 2–17.
  • Ohshiro, T., T. Hirata, I. Hashimoto, and Y. Izumi. 1996. Characterization of dibenzothiophene desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J. Ferm. Bioeng. 82:610–612. https://doi.org/10.1016/S0922-338X(97)81264-0
  • Ohshiro, T., T. Hirata, and Y. Izumi. 1995. Microbial desulfurization of dibenzothiophene in the presence of hydrocarbon. Appl. Microbiol. Biotechnol. 44:249–252.
  • Rashtchi, M., G. H. Mohebali, M. M. Akbarnejad, J. Towfighi, B. Rasekh, and A. Keytash. 2006. Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochem. Eng. J. 29:169–173. https://doi.org/10.1016/j.bej.2005.08.034
  • Setti, L., G. Lanzarini, and P. G. Pifferi. 1996. Immobilized cells for applications in non-conventional systems pp. 777–784. In R. H. Wijffels, R. M. Buitelaar, C. Bucke, and J. Tramper (ed.), Progress in biotechnology. Immobilized cells: basics and applications, vol. 11. Elsevier, Amsterdam, The Netherlands. Pp. 777–784.
  • Yu, B., P. Xu, S. Quan, and M. Cuiqing. 2006. Deep desulphurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis srain. Appl. Environ. Microbil. 72:54–58. https://doi.org/10.1128/AEM.72.1.54-58.2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.