191
Views
2
CrossRef citations to date
0
Altmetric
Geology/Geochemistry

Assessment of hydrocarbon generative potential of Late Paleocene coals from East Khasi Hills, Meghalaya, North-East India

ORCID Icon, & ORCID Icon

References

  • Abdullah, W. H., O. S. Togunwa, Y. M. Makeen, M. H. Hakimi, K. A. Mustapha, M. H. Baharuddin, S. G. Sia, and F. Tongkul. 2017. Hydrocarbon source potential of eocene-miocene sequence of Western Sabah, Malaysia. Marine and Petroleum Geology 83:345–61. doi:https://doi.org/10.1016/j.marpetgeo.2017.02.031.
  • Al-Areeq, N. M., M. A. Al-Badani, A. H. Salman, and M. A. Albaroot. 2018. Petroleum source rocks characterization and hydrocarbon generation of the Upper Jurassic succession in Jabal Ayban field, Sabatayn Basin, Yemen. Egyptian Journal of Petroleum 27 (4):835–51. doi:https://doi.org/10.1016/j.ejpe.2017.12.005.
  • ASTM (American Society for Testing and Materials) D5373-08. 1993. Standard test methods for instrumental determination of carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. ASTM , United States, 1–11.
  • Chen, Z., C. Jiang, D. Lavoie, and J. Reyes. 2016. Model-assisted Rock-Eval data interpretation for source rock evaluation: Examples from producing and potential shale gas resource plays. International Journal of Coal Geology 165:290–302. doi:https://doi.org/10.1016/j.coal.2016.08.026.
  • Deshpande, S. V., A. Bhandari, J. Deshpande, K. S. Rana, M. Girdhar, A. S. Kale, S. M. Goel, R. M. Baruah, A. Kumar, A. M. Chitrao, et al. 1993. Assam arakan basin. Dehradun: KDMIPE, ONGC, 11–90.
  • Espitalié, J., J. L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, and A. Boutefeu. 1977. Méthode rapide de caractérisation des roches méres, de leur potentiel pétrolier et de leur degré d’évolution. Revue de L'Institut Français du Pétrole 32 (1):23–42. doi:https://doi.org/10.2516/ogst:1977002.
  • GSI. 2009. Geology and mineral resources of Meghalaya. Geological Survey of India. Miscelleaneous Publication, No. 30 Part IV Vol 2(ii).
  • Hakimi, M. H., and W. H. Abdullah. 2013. Organic geochemical characteristics and oil generating potential of the Upper Jurassic Safer shale sediments in the Marib-Shabowah Basin, western Yemen. Organic Geochemistry 54:115–24. doi:https://doi.org/10.1016/j.orggeochem.2012.10.003.
  • Hakimi, M. H., W. H. Abdullah, M. Alqudah, Y. M. Makeen, K. A. Mustapha, and B. A. Hatem. 2018. Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential. Marine and Petroleum Geology 91:764–75. doi:https://doi.org/10.1016/j.marpetgeo.2018.01.036.
  • Hossain, H. Z., Y. Sampei, H. M. Ratul-Al-Istiak, T. R. Mahid, A. S. Ratnayake, S. Naseem, and A. A. Hakro. 2020. Source of organic matter and depositional environments of the middle Paleocene Lakhra coals, Sindh Province, Pakistan. Researches in Organic Geochemistry 36:1–11.
  • Hunt, J. M. 1996. Petroleum geochemistry and geology, 2nd ed. New York: Freeman and Company, 743.
  • Kularathna, E. K. C. W., H. M. T. G. A. Pitawala, A. Senaratne, and A. S. Ratnayake. 2020. Play distribution and the hydrocarbon potential of the Mannar Basin, Sri Lanka. Journal of Petroleum Exploration and Production Technology 10 (6):2225–43. doi:https://doi.org/10.1007/s13202-020-00902-8.
  • Kumar, A., M. Nath, and A. K. Singh. 2021. Source Rock Characterization for Hydrocarbon Generative Potential and Thermal Maturity of Sutunga Coals, (East Jaintia Hill) Meghalaya, India: Petrographic and Geochemical Approach. Journal of the Geological Society of India 97 (6):643–8. doi:https://doi.org/10.1007/s12594-021-1739-6.
  • Langford, F. F., and M. M. Blanc-Valleron. 1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bulletin 74 (6):799–804.
  • Longbottom, T. L., W. C. Hockaday, K. S. Boling, G. Li, Y. Letourmy, G. Dong, and S. I. Dworkin. 2016. Organic structural properties of kerogen as predictors of source rock type and hydrocarbon potential. Fuel 184:792–8. doi:https://doi.org/10.1016/j.fuel.2016.07.066.
  • Mishra, H. K., and R. K. Ghosh. 1996. Geology, petrology and utilisation potential of some Tertiary coals of the northeastern region of India. International Journal of Coal Geology 30 (1–2):65–100. doi:https://doi.org/10.1016/0166-5162(95)00038-0.
  • Misra, S., A. K. Varma, B. Hazra, S. Biswas, and S. K. Samad. 2019. The influence of the thermal aureole asymmetry on hydrocarbon generative potential of coal beds: Insights from Raniganj Basin, West Bengal, India. International Journal of Coal Geology 206:91–105. doi:https://doi.org/10.1016/j.coal.2019.03.008.
  • Pashin, J. C. 2008. Coal as a petroleum source rock and reservoir rock. In Applied coal petrology, ed. Dr. Isabel Sua’rez-Ruiz and Dr. John C. Crelling, 227–62. Amsterdam, Netherlands: Elsevier.
  • Peters, K. E. 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin 70 (3):318–29.
  • Peters, K. E., and M. R. Cassa. 1994. Applied source rock geochemistry. In The petroleum system-from source to trap, ed. L. B. Magoon and W. G. Dow, vol.60, 93–120. Tulsa: AAPG Memoir.
  • Peters, K. E., C. C. Walters, and J. M. Moldowan. 2005. Biomarker guide. In Biomarkers and isotopes in petroleum exploration and earth history, vol. 2, 2nd ed., 476–971. Cambridge: University Press.
  • Ratnayake, A. S. 2021a. Late Cretaceous to Miocene Paleoclimatic changes in the Indian Ocean: Insights from the deepwater Mannar Basin, Sri Lanka. Geo-Marine Letters 41 (3):1–14. doi:https://doi.org/10.1007/s00367-021-00710-x.
  • Ratnayake, A. S. 2021b. Paleoenvironments and source rock potential of Dorado North well in the Mannar Basin (Indian Ocean). Arabian Journal of Geosciences 14 (9):1–9. doi:https://doi.org/10.1007/s12517-021-07127-x.
  • Ratnayake, A. S., C. W. Kularathne, and Y. Sampei. 2018. Assessment of hydrocarbon generation potential and thermal maturity of the offshore Mannar Basin, Sri Lanka. Journal of Petroleum Exploration and Production Technology 8 (3):641–54. doi:https://doi.org/10.1007/s13202-017-0408-1.
  • Ratnayake, A. S., and Y. Sampei. 2019. Organic geochemical evaluation of contamination tracers in deepwater well rock cuttings from the Mannar Basin, Sri Lanka. Journal of Petroleum Exploration and Production Technology 9 (2):989–96. doi:https://doi.org/10.1007/s13202-018-0575-8.
  • Singh, A. K., M. H. Hakimi, A. Kumar, A. Ahmed, N. S. Z. Abidin, M. Kinawy, O. El Mahdy, and A. Lashin. 2020. Geochemical and organic petrographic characteristics of high bituminous shales from Gurha mine in Rajasthan, NW India. Scientific Reports 10 (1):1–19. doi:https://doi.org/10.1038/s41598-020-78906-x.
  • Singh, A. K., and A. Kumar. 2018. Organic geochemical characteristics of Nagaur lignites, Rajasthan, India, and their implication on thermal maturity and paleoenvironment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (15):1842–51. doi:https://doi.org/10.1080/15567036.2018.1487480.
  • Singh, A. K., and A. Kumar. 2017. Liquefaction behavior of Eocene lignites of Nagaur Basin, Rajasthan, India: A petrochemical approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (15):1686–93.
  • Singh, A. K., A. Kumar, and M. H. Hakimi. 2018. Organic geochemical and petrographical characteristics of the Nagaur lignites, Western Rajasthan, India and their relevance to liquid hydrocarbon generation. Arabian Journal of Geosciences 11 (15):1–15. doi:https://doi.org/10.1007/s12517-018-3744-7.
  • Singh, A. K., P. K. Singh, M. P. Singh, and P. K. Banerjee. 2015. Utilization of the permian coal deposits of West Bokaro, India: A petrochemical evaluation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (10):1081–8. doi:https://doi.org/10.1080/15567036.2011.603029.
  • Singh, P. K. 2012. Petrological and geochemical considerations to predict oil potential of Rajpardi and Vastan lignite deposits of Gujarat, Western India. Journal of the Geological Society of India 80 (6):759–70. doi:https://doi.org/10.1007/s12594-012-0206-9.
  • Singh, V. P., B. D. Singh, R. P. Mathews, A. Singh, V. A. Mendhe, P. K. Singh, S. Mishra, S. Dutta, M. Shivanna, and M. P. Singh. 2017. Investigation on the lignite deposits of Surkha mine (Saurashtra Basin, Gujarat), western India: Their depositional history and hydrocarbon generation potential. International Journal of Coal Geology 183:78–99. doi:https://doi.org/10.1016/j.coal.2017.09.016.
  • Snyman, C. P. 1989. The role of coal petrography in understanding the properties of South African coal. International Journal of Coal Geology 14 (1–2):83–101. doi:https://doi.org/10.1016/0166-5162(89)90079-7.
  • Tissot, B. P., and D. H. Welte. 1984. Petroleum formation and occurrence, 2nd ed. Springer, Berlin 699.
  • Varma, A. K., B. Hazra, V. A. Mendhe, I. Chinara, and A. M. Dayal. 2015. Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India. Marine and Petroleum Geology 59:480–90. doi:https://doi.org/10.1016/j.marpetgeo.2014.10.003.
  • Wilkins, R. W. T., and S. C. George. 2002. Coal as a source rock for oil: a review. International Journal of Coal Geology 50 (1–4):317–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.