92
Views
0
CrossRef citations to date
0
Altmetric
Petroleum Processing

Experimental study on the removal of FCCS catalyst particles by the coupling interaction of the electrostatic field and flow field

, , , , , & show all

References

  • Abd, R. N., F. Ibrahim, and B. Yafouz. 2017. Dielectrophoresis for biomedical sciences applications: A review. Sensors 17 (3):449. doi:10.3390/s17050968.
  • Cao, Q., X. Xie, J. Li, J. Dong, and L. Jin. 2012. A novel method for removing quinoline insolubles and ash in coal tar pitch using electrostatic fields. Fuel 96 (7):314–8. doi:10.1016/j.fuel.2011.12.061.
  • Crevillén, A. G., M. Hervás, M. A. López, M. C. González, and A. Escarpa. 2007. Real sample analysis on microfluidic devices. Talanta 74 (3):342–57. doi:10.1016/j.talanta.2007.10.019.
  • Dong, P., C. Wang, and S. Zhao. 2005. Preparation of high-performance electrorheological fluids with coke-like particles from FCC slurry conversion. Fuel 84 (6):685–9. doi:10.1016/j.fuel.2004.03.021.
  • Douglas, T., A. J. Cemazar, N. Balani, D. C. Sweeney, E. M. Schmelz, and R. V. Davalos. 2017. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Electrophoresis 38 (11):1507–14. doi:10.1002/elps.201770085.
  • Eser, S, and G. Wan. 2007. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke. Energy & Fuels 21 (6):3573–82. doi:10.1021/ef060541v.
  • Fang, Y. J., W. Xiao, and G. R. Wang. 1998a. Study on electrostatic separation of solid-liquid systems I. Cold model experiment. Petrochemical Technology 27 (6):419–24.
  • Fang, Y. J., W. D. Xiao, and G. R. Wang. 1998b. Study on electrostatic separation of solid-liquid systems II. Measurement of saturated adsorption weigh. Petrochemical Technology 27 (11):815–8.
  • Fang, Y. J., W. D. Xiao, and G. R. Wang. 1999. Study on electrostatic separation of solid-liquid systems III. Hot model experiment. Petrochemical Technology 28 (5):312–5.
  • Guo, A. J., Z. Wei, B. Zhao, K. Chen, D. Liu, Z. Wang, and H. Song. 2014. Separation of toluene-insoluble solids in the slurry oil from a residual fluidized catalytic cracking unit: Determination of the solid content and sequential selective separation of solid components. Energy & Fuels 28 (5):3053–65. doi:10.1021/ef500353z.
  • Jiao, S., A. Guo, F. Wang, Y. Yu, B. W. Biney, H. Liu, K. Chen, D. Liu, Z. Wang, and L. Sun. 2021. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials. Fuel 285:119169. doi:10.1016/j.fuel.2020.119169.
  • Li, Q., A. Li, L. Guo, H. Cao, W. Xu, and Z. Wang. 2020. Microscopic mechanistic study on the removal of catalyst particles in FCCS by an electrostatic field. Powder Technology 363:500–8. doi:10.1016/j.powtec.2020.01.019.
  • Li, Q., Z. Wu, Z. Zhang, Z. Wang, L. Guo, and A. Li. 2019a. Experimental study on the removal of FCCS catalyst particles by electrostatic separation. Energy Source. Part A: Recovery Utilization and Environmental Effects 9:1–13. doi:10.1080/15567036.2019.1668505.
  • Li, Q., Z. Zhang, Z. Wu, Z. Wang, and L. Guo. 2019b. Effects of electrostatic field and operating parameters on removing catalytic particles from FCCS. Powder Technology 342:817–28. doi:10.1016/j.powtec.2018.10.060.
  • Li, W., Y. Chen, L. Zhang, Z. Xu, X. Sun, S. Zhao, and C. Xu. 2016. Supercritical fluid extraction of fluid catalytic cracking slurry oil: Bulk property and molecular composition of narrow fractions. Energy & Fuels 30 (12):10064–71. doi:10.1021/acs.energyfuels.6b01132.
  • Lin, I. J, and L. Benguigui. 1981. Dielectrophoretic filtration and separation: General outlook. Separation and Purification Methods 10 (1):53–72. doi:10.1080/03602548108066007.
  • Mazumder, M. K., R. A. Sims, A. S. Biris, P. K. Srirama, D. Saini, C. U. Yurteri, S. Trigwell, S. De, and R. Sharma. 2006. Twenty-first century research needs in electrostatic processes applied to industry and medicine. Chemical Engineering Science 61 (7):2192–221. doi:10.1016/j.ces.2005.05.002.
  • Pohl, H. A. 1951. The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics 22 (7):869–71. doi:10.1063/1.1700065.
  • Wu, H. B., J. Wen, L. H. Zhang, W. Yang, G. P. Zhang, and M. W. Yu. 2020. Purification of catalytic cracking slurry and comprehensive utilization to produce high value-added products. Applied Chemical Industry 49 (10):2618–24. +2635.
  • Zhang, Z., Q. Li, Z. Wang, Z. Wu, A. Li, and L. Guo. 2019. Effect of structural parameters of an electrostatic separator on the removal of catalyst particles from fluid catalytic cracking slurry. Separation and Purification Technology 222:11–21. doi:10.1016/j.seppur.2019.04.012.
  • Zhao, N. 2016. Study on electrostatic separation of solid particles in FCC slurry. MA diss., China University of Petroleum (East China).
  • Zhong, L., Z. Sun, X. Ren, A. Chen, and Z. Wang. 2017. Research progress of catalyst removal in FCC slurry. Petrochemical Technology 46 (09):1209–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.