210
Views
0
CrossRef citations to date
0
Altmetric
Flow Assurance

Fatigue performance of graphene oxide modified asphalt mixture: experimental investigation and response surface methodology

, , &

References

  • Abu Abdo, A. M., and M. E. Khater. 2018. Enhancing rutting resistance of asphalt binder by adding plastic waste. Cogent Engineering 5 (1):1452472. doi:10.1080/23311916.2018.
  • Adamu, M., B. S. Mohammed, and M. S. Liew. 2018. Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica. Construction and Building Materials 171:521–38. doi:10.1016/j.conbuildmat.2018.03.138.
  • Adnan, A. M., C. Lü, X. Luo, and J. Wang. 2021. Impact of graphene oxide on zero shear viscosity, fatigue life and low-temperature properties of asphalt binder. Materials 14 (11):1–15. doi:10.3390/ma14113073.
  • Adnan, A. M., C. Lü, X. Luo, J. Wang, and G. Liu. 2022. Fracture properties and potential of asphalt mixtures containing graphene oxide at low and intermediate temperatures. International Journal of Pavement Engineering 0 (0): 1–17. doi:10.1080/10298436.2021.2020268.
  • Adnan, A. M., X. Luo, C. Lü, J. Wang, and Z. Huang. 2020a. Improving mechanics behavior of hot mix asphalt using graphene-oxide. Construction and Building Materials 254:119261. doi:10.1016/j.conbuildmat.2020.119261.
  • Adnan, A. M., X. Luo, C. Lü, J. Wang, and Z. Huang. 2020b. Physical properties of graphene-oxide modified asphalt and performance analysis of its mixtures using response surface methodology. International Journal of Pavement Engineering 23 (5):1378–92. doi:10.1080/10298436.2020.1804061.
  • Airey, G. D. 2003. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 82 (14):1709–19. doi:10.1016/S0016-2361(03)00146-7.
  • Al-Khateeb, G. G., and K. A. Ghuzlan. 2014. The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the IDT test configuration. International Journal of Fatigue 59:254–61. doi:10.1016/j.ijfatigue.2013.08.011.
  • Ameri, M., M. Vamegh, R. Imaninasab, and H. Rooholamini. 2016. Effect of nanoclay on performance of neat and SBS-modified bitumen and HMA. Petroleum Science and Technology 34 (11–12):1091–7. doi:10.1080/10916466.2016.1163394.
  • Bala, N., M. Napiah, and I. Kamaruddin. 2018. Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. International Journal of Pavement Engineering 8436:1–12. doi:10.1080/10298436.2018.1435881.
  • Boylu, F. 2011. Optimization of foundry sand characteristics of soda-activated calcium bentonite. Applied Clay Science 52 (1–2):104–8. doi:10.1016/j.clay.2011.02.005.
  • Chen, Z., T. Wang, J. Pei, S. Amirkhanian, F. Xiao, Q. Ye, and Z. Fan. 2019. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. Journal of Cleaner Production 234:1262–74. doi:10.1016/j.jclepro.2019.06.147.
  • Cheraghian, G., and M. P. Wistuba. 2021. Effect of fumed silica nanoparticles on ultraviolet aging resistance of bitumen. Nanomaterials 11 (2):1–18. doi:10.3390/nano11020454.
  • Cheraghian, G., M. P. Wistuba, S. Kiani, A. R. Barron, and A. Behnood. 2021. Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles. Scientific Reports 11 (1):1–20. doi:10.1038/s41598-021-90620-w.
  • Cheraghian, G., M. P. Wistuba, S. Kiani, A. Behnood, M. Afrand, and A. R. Barron. 2022. Engineered nanocomposites in asphalt binders. Nanotechnology Reviews 11 (1):1047–67. doi:10.1515/ntrev-2022-0062.
  • Fang, C., R. Yu, S. Liu, and Y. Li. 2013. Nanomaterials applied in asphalt modification: A review. Journal of Materials Science and Technology 29 (7):589–94. doi:10.1016/j.jmst.2013.04.008.
  • Farahani, H. Z., M. Palassi, and S. S. Galooyak. 2022. Using response surface methodology to optimize rubber and LDPE contents in bitumen at low-temperature performance. Petroleum Science and Technology 41 (2):139–58. doi:10.1080/10916466.2022.2052092.
  • Gama, D. A., J. M. Rosa, T. J. Alves De Melo, and J. K. G. Rodrigues. 2016. Rheological studies of asphalt modified with elastomeric polymer. Construction and Building Materials 106:290–5. doi:10.1016/j.conbuildmat.2015.12.142.
  • Golestani, B., B. H. Nam, F. M. Nejad, and S. Fallah. 2015. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Construction and Building Materials 91:32–8. doi:10.1016/j.conbuildmat.2015.05.019.
  • Hussein, A. M., R. P. Jaya, N. A. Hassan, H. Yaacob, G. F. Huseien, and M. H. W. Ibrahim. 2017. Performance of nanoceramic powder on the chemical and physical properties of bitumen. Construction and Building Materials 156:496–505. doi:10.1016/j.conbuildmat.2017.09.014.
  • Jasso, M., R. Hampl, O. Vacin, D. Bakos, J. Stastna, and L. Zanzotto. 2015. Rheology of conventional asphalt modified with SBS, elvaloy and polyphosphoric acid. Fuel Processing Technology 140:172–9. doi:10.1016/j.fuproc.2015.09.002.
  • JTG. 2004. JTG F40–2004. Technical specifications for construction of highway asphalt pavements. Beijing: China Ministry of Transport.
  • Karahancer, S. 2020. Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt. Petroleum Science and Technology 38 (13):773–84. doi:10.1080/10916466.2020.1783292.
  • Khan, M. I., M. H. Sutanto, M. B. Napiah, S. E. Zoorob, N. I. M. Yusoff, A. Usman, and A. M. Memon. 2020. Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: Design and optimisation using response surface methodology. International Journal of Pavement Engineering 23 (8):2515–30. doi:10.1080/10298436.2020.1861446.
  • Kim, D. H., E. Jeong, S. E. Oh, and H. S. Shin. 2010. Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration. Water Research 44 (10):3093–100. doi:10.1016/j.watres.2010.02.032.
  • Lee, J. W., Y. H. Kim, S. M. Lee, and H. W. Lee. 2012. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresource Technology 116:471–6. doi:10.1016/j.biortech.2012.03.122.
  • Li, Y., S. Wu, and S. Amirkhanian. 2018. Investigation of the graphene oxide and asphalt interaction and its effect on asphalt pavement performance. Construction and Building Materials 165:572–84. doi:10.1016/j.conbuildmat.2018.01.068.
  • Liu, K., K. Zhang, and X. Shi. 2018. Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide. Construction and Building Materials 163:880–9. doi:10.1016/j.conbuildmat.2017.12.171.
  • Mirhosseini, A. F., S. A. Tahami, I. Hoff, S. Dessouky, and C. H. Ho. 2019. Performance evaluation of asphalt mixtures containing high-rap binder content and bio-oil rejuvenator. Construction and Building Materials 227:116465. doi:10.1016/j.conbuildmat.2019.07.191.
  • Moghaddam, T. B., M. Soltani, and M. R. Karim. 2015a. Stiffness modulus of polyethylene terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Materials and Design 68:88–96. doi:10.1016/j.matdes.2014.11.044.
  • Moghaddam, T. B., M. Soltani, M. R. Karim, and H. Baaj. 2015b. Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement: Journal of the International Measurement Confederation 74:159–69. doi:10.1016/j.measurement.2015.07.012.
  • Montgomery, D. C. 2012. Design and analysis of experiments. New York: Wiley.
  • Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2016. Response surface methodology: Process and product optimization using designed experiments. New York: Wiley.
  • Nassar, A. I., N. Thom, and T. Parry. 2016. Optimizing the mix design of cold bitumen emulsion mixtures using response surface methodology. Construction and Building Materials 104:216–29. doi:10.1016/j.conbuildmat.2015.12.073.
  • Ölmez, T. 2009. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials 162 (2–3):1371–8. doi:10.1016/j.jhazmat.2008.06.017.
  • Saboo, N., and P. Kumar. 2016. Performance characterization of polymer modified asphalt binders and mixes. Advances in Civil Engineering 2016:5938270. doi:10.1155/2016/5938270.
  • Santagata, E., O. Baglieri, L. Tsantilis, and G. Chiappinelli. 2015. Fatigue properties of bituminous binders reinforced with carbon nanotubes. International Journal of Pavement Engineering 16 (1):80–90. doi:10.1080/10298436.2014.923099.
  • Shafabakhsh, G., M. Motamedi, M. Firouznia, and M. Isazadeh. 2019. Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade. Petroleum Science and Technology 37 (13):1495–500. doi:10.1080/10916466.2018.1476534.
  • Shaffie, E., R. P. Jaya, J. Ahmad, A. K. Arshad, M. A. Zihan, and F. Shiong. 2022. Prediction model of the coring asphalt pavement performance through response surface methodology. Advances in Materials Science and Engineering 2022:6723396. doi:10.1155/2022/6723396.
  • Singh, D., A. Kuity, S. Girimath, A. Suchismita, and B. Showkat. 2020. Investigation of chemical, microstructural, and rheological perspective of asphalt binder modified with graphene oxide. Journal of Materials in Civil Engineering 32 (11):04020323. doi:10.1061/(asce)mt.1943-5533.0003385.
  • Soltani, M., T. B. Moghaddam, M. R. Karim, and H. Baaj. 2015. Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology. Engineering Failure Analysis 58:238–48. doi:10.1016/j.engfailanal.2015.09.005.
  • Wu, S., Z. Zhao, Y. Li, L. Pang, S. Amirkhanian, and M. Riara. 2017. Evaluation of aging resistance of graphene oxide modified asphalt. Applied Sciences 7 (7):702. doi:10.3390/app7070702.
  • Yadav, O. P., G. Thambidorai, B. Nepal, and L. Monplaisir. 2014. A robust framework for multi-response surface optimization methodology. Quality and Reliability Engineering International 30 (2):301–11. doi:10.1002/qre.1499.
  • Yıldırım, Z. B., and M. Karacasu. 2019. Modelling of waste rubber and glass fibber with response surface method in hot mix asphalt. Construction and Building Materials 227:1–14. doi:10.1016/j.conbuildmat.2019.117070.
  • Zahid, M., N. Shafiq, M. H. Isa, and L. Gil. 2018. Statistical modeling and mix design optimization of fly ash based engineered geopolymer composite using response surface methodology. Journal of Cleaner Production 194:483–98. doi:10.1016/j.jclepro.2018.05.158.
  • Zeng, W., S. Wu, L. Pang, Y. Sun, and Z. Chen. 2017. The utilization of graphene oxide in traditional construction materials: Asphalt. Materials 10 (1):48. doi:10.3390/ma10010048.
  • Zhang, H. L., M. M. Su, S. F. Zhao, Y. P. Zhang, and Z. P. Zhang. 2016. High and low temperature properties of nano-particles/polymer modified asphalt. Construction and Building Materials 114:323–32. doi:10.1016/j.conbuildmat.2016.03.118.
  • Zhu, J., K. Zhang, K. Liu, and X. Shi. 2019. Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide. Construction and Building Materials 217:273–82. doi:10.1016/j.conbuildmat.2019.05.054.
  • Ziari, H., H. Farahani, A. Goli, and S. Sadeghpour Galooyak. 2014. The Investigation of the impact of carbon nano tube on bitumen and HMA performance. Petroleum Science and Technology 32 (17):2102–8. doi:10.1080/10916466.2013.763827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.