99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of ZnO–TiO2/zeolite nanocomposites to enhance oil recovery from sandstone formations

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmadi, Y., F. Javadi, and T. Kikhavandi. 2023b. Effect of different salinity on low permeability carbonate reservoir recovery using a new green polymeric nanocomposites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):1091–1103. doi:10.1080/15567036.2023.2176571.
  • Ahmadi, Y., and M. Mansouri. 2021. Using new synthesis zirconia-based NCs for improving water alternative associated gas tests considering interfacial tension and contact angle measurements. Energy & Fuels 35 (20):16724–16734. doi:10.1021/acs.energyfuels.1c02576.
  • Ahmadi, Y., M. Mansouri, and E. Jafarbeigi. 2023a. Improving simultaneous water alternative associate gas tests in the presence of newly synthesized γ‑Al2O3/ZnO/urea nano-composites: an experimental core flooding tests. ACS Omega 8 (1):1443–1452. doi:10.1021/acsomega.2c06879.
  • Ali, J. A. 2023. Effect of Fe3O4/mineral–soil nanocomposites on wettability alteration and oil production under the spontaneous imbibition process. Arabian Journal for Science and Engineering 48 (7):9259–9268. doi:10.1007/s13369-022-07323-1.
  • Ali, J. A., K. Kolo, A. K. Manshad, and K. D. Stephen. 2021. Emerging applications of TiO2/SiO2/poly (acrylamide) nanocomposites within the engineered water EOR in carbonate reservoirs. Journal of Molecular Liquids 322:114943. doi:10.1016/j.molliq.2020.114943.
  • Ali, J. A., K. Kolo, S. M. Sajadi, A. K. Manshad, and K. D. Stephen. 2019. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs, IFT reduction, wettability alteration, rheology and emulsification characteristics. Journal of Molecular Liquids 284:735–747. doi:10.1016/j.molliq.2019.04.053.
  • Bennetzen, M. V., and K. Mogensen. 2014. Novel applications of nanoparticles for future enhanced oil recovery. In International Petroleum Technology Conference, Kuala Lumpur, Malaysia. doi:10.2523/17857-MS.
  • Bouvy, C., W. Marine, R. Sporken, and B. L. Su. 2006. Photoluminescence properties and quantum size effect of ZnO nanoparticles confined inside a Faujasite X zeolite matrix. Chemical Physics Letters 428 (4-6):312–316. doi:10.1016/j.cplett.2006.06.106.
  • Chang, C. T., J. J. Wang, T. Ouyang, Q. Zhang, and Y. H. Jing. 2015. Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials Science and Engineering: B 196:53–60. doi:10.1016/j.mseb.2014.12.025.
  • Ehtesabi, H., M. Ahadian, and V. Taghikhani. 2015. Enhanced heavy oil recovery using TiO2 nanoparticles: investigation of deposition during transport in core plug. Energy & Fuels 29 (1):1–8. doi:10.1021/ef5015605.
  • El-Hoshoudy, A. N., S. Gomaa, and M. Taha. 2019. Improving oil recovery using zeolite nanoparticles flooding. Petroleum & Petrochemical Engineering Journal 3 (1): n. pag. doi: 10.23880/ppej-16000186.
  • Esmaeilzadeh, P., M. Y. Sadeghi, and A. Bahramian. 2018. Production improvement in gas condensate reservoirs by wettability alteration, using superamphiphobic titanium oxide nanofluid. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 73:46. doi:10.2516/ogst/2018057.
  • Jafarbeigi, E., Y. Ahmadi, M. Mansouri, and S. Ayatollahi. 2022. Experimental core flooding investigation of new ZnO − γAl2O3 nanocomposites for enhanced oil recovery in carbonate reservoirs. ACS Omega 7 (43):39107–39121. doi:10.1021/acsomega.2c04868.
  • Jafarbeigi, E., S. Ayatollahi, Y. Ahmadi, M. Mansouri, and F. Dehghani. 2023. Identification of novel applications of chemical compounds to change the wettability of reservoir rock: a critical review. Journal of Molecular Liquids 371:121059. doi:10.1016/j.molliq.2022.121059.
  • Jiang, R., K. Li, and R. Horne. 2017. A mechanism study of wettability and interfacial tension for EOR using silica nanoparticles. In SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Society of Petroleum Engineers. doi:10.2118/187096-MS.
  • Hendraningrat, L., and O. Torsæter. 2015. Metal oxide-based nanoparticles, revealing their potential to enhance oil recovery in different wettability systems. Applied Nanoscience 5 (2):181–199. doi:10.1007/s13204-014-0305-6.
  • Karimi, R., B. Bayati, N. C. Aghdam, M. Ejtemaee, and A. A. Babaluo. 2012. Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent. Powder Technology 229:229–236. doi:10.1016/j.powtec.2012.06.037.
  • Keykhosravi, A., M. B. Vanani, and C. Aghayari. 2021. TiO2 nanoparticle-induced Xanthan Gum Polymer for EOR: assessing the underlying mechanisms in OW carbonates. Journal of Petroleum Science and Engineering 204:108756. doi:10.1016/j.petrol.2021.108756.
  • Khaksar Manshad, A., J. A. Ali, M. Mosalman Haghighi, S. M. Sajadi, and A. Keshavarz. 2022. Oil recovery aspects of ZnO/SiO2 nano-clay in carbonate reservoir. Fuel 307:121927. doi:10.1016/j.fuel.2021.121927.
  • Khalilnezhad, A., H. Rezvani, P. Ganji, and Y. Kazemzadeh. 2019. A complete experimental study of oil/water interfacial properties in the presence of TiO2 nanoparticles and different ion. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 74:39. doi:10.1016/j.petrol.2021.108756.
  • Khazaei, M., and M. S. Hosseini. 2017. Synthesis hydrophilic hybrid nanoparticles and its application in wettability alteration of OW carbonate rock reservoir. Petroleum Science and Technology 35 (24):2269–2276. doi:10.1080/10916466.2017.1402031.
  • Kumar, R. S., R. Narukulla, and T. Sharma. 2020b. Comparative effectiveness of thermal stability and rheological properties of nanofluid of SiO2–TiO2 nanocomposites for oil field applications. Industrial & Engineering Chemistry Research 59 (35):15768–15783. doi:10.1021/acs.iecr.0c01944.
  • Kumar, R. S., and T. Sharma. 2018. Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO–TiO2 nanocomposites for oilfield applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539:171–183. doi:10.1016/j.colsurfa.2017.12.028.
  • Kumar, R. S., and T. Sharma. 2020a. Stable SiO2–TiO2 composite-based nanofluid of improved rheological behaviour for high-temperature oilfield applications. Geosystem Engineering 23 (1):51–61. doi:10.1080/12269328.2020.1713909.
  • Kong, X., and M. M. Ohadi. 2010. Application of micro and nano technologies in the oil and gas industry-overview of the recent progress. In Abu Dhabi International Petroleum Exhibition and Conference. doi:10.2118/138241-MS.
  • Latiff, N. R. A., N. Yahya, H. M. Zaid, and B. Demiral. 2011. Novel enhanced oil recovery method using dielectric zinc oxide nanoparticles activated by electromagnetic waves. In 2011 National Postgraduate Conference, IEEE.
  • Lee, K. C., Z. A. B. Saipolbahri, H. Soleimani, H. M. Zaid, B. H. Guan, and D. L. C. Ching. 2016. Effect of zinc oxide nanoparticle sizes on viscosity of nanofluid for application in enhanced oil recovery. Journal of Nano Research 38:36–39. doi:10.4028/www.scientific.net/JNanoR.38.36.
  • Li, Y., C. Dai, H. Zhou, X. Wang, W. Lv, and M. Zhao. 2018. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery. Energy & Fuels 32 (1):287–293. doi:10.1021/acs.energyfuels.7b03132.
  • Maleki, A., B. Sedaee, A. Bahramian, S. Gharechelou, N. Sarlak, A. Mehdizad, M. R. Rasaei, and A. K. Dehghan. 2023. Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel. Petroleum doi:10.1016/j.petlm.2023.03.001.
  • Mansouri, M., Y. Ahmadi, and E. Jafarbeigi. 2022. Introducing a new method of using nanocomposites for preventing asphaltene aggregation during real static and dynamic natural depletion tests. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 44 (3):7499–7513. doi:10.1080/15567036.2022.2113937.
  • Mansouri, M., M. Tanzifi, H. Lotfi, and M. Nademi. 2017. Investigation of UV/TiO2-ZnO-Co photocatalytic degradation of azo dye (Reactive Red 120) by response surface methodology. Scientific Study and Research: Chemistry and Chemical Engineering 18:153–165.
  • Nazarahari, M. J., A. Khaksar Manshad, S. Moradi, A. Shafiei, J. Abdulazez Ali, S. M. Sajadi, and A. Keshavarz. 2020. Synthesis, characterization, and assessment of a CeO2@Nanoclay nanocomposite for enhanced oil recovery. Nanomaterials 10:2280. doi:10.3390/nano10112280.
  • Nodehi, A., H. Atashi, and M. Mansouri. 2019. Improved photocatalytic degradation of reactive blue 81 using NiO-doped ZnO–ZrO2 nanoparticles. Journal of Dispersion Science and Technology 40 (5):766–76. doi:10.1080/01932691.2018.1499522.
  • Sakthivel, S., B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan. 2003. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 77 (1):65–82. doi:10.1016/S0927-0248(02)00255-6.
  • Sayyadnejad, M. A., H. R. Ghaffarian, and M. Saeidi. 2008. Removal of hydrogen sulfide by zinc oxide nanoparticles in drilling fluid. International Journal of Environmental Science & Technology 5 (4):565–569. doi:10.1007/BF03326054.
  • Suleimanov, B. A., and H. F. Abbasov. 2016. Effect of copper nanoparticle aggregation on the thermal conductivity of nanofluids. Russian Journal of Physical Chemistry A 90 (2):420–428. doi:10.1134/S0036024416020308.
  • Tajmiri, M., and M. R. Ehsani. 2017. Water saving by using nanoparticles in heavy oil reservoir through thermal EOR method: special pertaining to ZnO & CuO. Ambient SCIENCE 03 & 04 (Sp1, Sp2 & 01):7–12. doi:10.21276/ambi.2017.04.1.ga02.
  • Tajmiri, M., M. R. Ehsani, S. M. Mousavi, E. Roayaei, and A. Emadi. 2015. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production. In Proceeding of 1st National Chemistry and Nanotechnology Conference, AIP Publishing. doi:10.1063/1.4919162.
  • Vabbina, P. K., R. Sinha, R. A. Ahmadivand, M. Karabiyik, B. Gerislioglu, O. Awadallah, and N. Pala. 2017. Sonochemical synthesis of a zinc oxide core–shell nanorod radial p–n homojunction ultraviolet photodetector. ACS Applied Materials & Interfaces 9 (23):19791–19799. doi:10.1021/acsami.7b02634.
  • Zaid, H. M., N. R. A. Latiff, and N. Yahya. 2014. The effect of zinc oxide and aluminum oxide nanoparticles on interfacial tension and viscosity of nanofluids for enhanced oil recovery. Advanced Materials Research 1024:56–59. doi:10.4028/www.scientific.net/AMR.1024.56.
  • Zaid, H. M., N. Yahya, and N. R. A. Latiff. 2012. The effect of nanoparticles crystallite size on the recovery efficiency. Journal of Nano Research 21:103–108. doi:10.4028/www.scientific.net/JNanoR.21.103.
  • Zhang, K. 2014. Mechanism and effect of natural zeolite in EOR. Petroleum Science and Technology 32 (9):1131–1137. doi:10.1080/10916466.2011.635741.
  • Zhang, X., J. Wang, H. Liu, C. Liu, and K. Yeung. 2003. Photocatalytic activity investigation of ZnO-TiO2 stabilized on ZSM-5 zeolite for methyl orange degradation. Separation and Purification Technology 32 (1-3):151–158. doi:10.1016/S1383-5866(03)00028-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.