25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on decomposition characteristics of natural gas hydrate based on molecular dynamics method

ORCID Icon, , ORCID Icon, , &

References

  • Boswell, R., and T.-S. Collett. 2011. Current perspectives on gas hydrate resources. Energy & Environmental Science 4 (4):1206–15. doi:10.1039/C0EE00203H.
  • Chong, Z.-R., S.-H.-B. Yang, P. Babu, P. Linga, and X.-S. Li. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 162:1633–52. doi:10.1016/j.apenergy.2014.12.061.
  • Deserno, M., and C. Holm. 1998. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. The Journal of Chemical Physics 109 (18):7678–93. doi:10.1063/1.477414.
  • English, N.-J., and J.-M.-D. MacElroy. 2015. Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chemical Engineering Science 121:133–56. doi:10.1016/j.ces.2014.07.047.
  • Gao, F.-F., K.-M. Gupta, S.-L. Yuan, and J.-W. Jiang. 2018. Decomposition of CH4 hydrate: Effects of temperature and salt from molecular simulations. Molecular Simulation 44 (15):1220–8. doi:10.1080/08927022.2018.1478090.
  • Hobza, P., M. Kabelac, J. Sponer, P. Mejzlik, and J. Vondrasek. 1997. Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semi empirical quantum chemical methods (AM1, MNDO/M, PM3), and AB initio HARTREE-FOCK method for interaction of DNA bases - comparison with non-empirical beyond HARTREE-FO. Journal of Computational Chemistry 18 (9):1136–50. doi:10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.3.CO;2-I.
  • Cox, J.-L. 1983. Natural gas hydrates: Properties, occurrence and recovery. Boston: Butterworth. https://www.osti.gov/biblio/7229431.
  • Julin, J., I. Napari, and H. Vehkamäki. 2007. Comparative study on methodology in molecular dynamics simulation of nucleation. The Journal of Chemical Physics 126 (22):224517. doi:10.1063/1.2740269.
  • Kim, H.-C., P.-R. Bishnoi, R.-A. Heidemann, and S.-S.-H. Rizvi. 1987. Kinetics of methane hydrate decomposition. Chemical Engineering Science 42 (7):1645–53. doi:10.1016/0009-2509(87)80169-0.
  • Kondori, J., S. Zendehboudi, and L. James. 2019. Molecular dynamic simulations to evaluate dissociation of hydrate structure II in the presence of inhibitors: A mechanistic study. Chemical Engineering Research and Design 149:81–94. doi:10.1016/j.cherd.2019.05.048.
  • Li, D.-X., S.-R. Ren, L. Zhang, and Y.-X. Liu. 2016. Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors. Journal of Petroleum Science and Engineering 146:552–60. doi:10.1016/j.petrol.2016.07.014.
  • Liu, W.-Y. 2020. Experimental Study on the Effect of Salt on the Stability of Methane Hydrate. China University of Petroleum (Hua Dong). doi:10.27644/d.cnki.gsydu.2018.001032.
  • MacDonald, G.-J. 1990. The Future of Methane as an Energy Resource. Annual Review of Energy 15 (1):53–83. doi:10.1146/annurev.eg.15.110190.000413.
  • Michael, T., B. R. Kirchner, W.-B. Edward, and R. L. Norman. 2004. Gas hydrate single-crystal structure analyses. Journal of the American Chemical Society 126 (30):9407–12. doi:10.1021/ja049247c.
  • Qin, X.-W., Q.-Y. Liang, J.-L. Ye, L. Yang, H.-J. Qiu, W.-W. Xie, J.-Q. Liang, J.-A. Lu, C. Lu, H.-L. Lu, et al. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Applied Energy 278:115649. doi:10.1016/j.apenergy.2020.115649.
  • Rutqvist, J., G.-J. Moridis, T. Grover, and T. Collett. 2009. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering 67 (1-2):1–12. doi:10.1016/j.petrol.2009.02.013.
  • Song, Y.-C., Y.-M. Kuang, Z. Fan, Y.-C. Zhao, and J.-F. Zhao. 2018. Influence of core scale perme ability on gas production from methane hydrate by thermal stimulation. International Journal of Heat and Mass Transfer 121:207–14. doi:10.1016/j.ijheatmasstransfer.2017.12.157.
  • Udachin, K.-A., C.-I. Ratcliffe, and A.-R. John. 2002. Single crystal diffraction studies of structure I, II and H Hydrates: Structure, cage occupancy and composition. Journal of Supramolecular Chemistry 2 (4-5):405–8. doi:10.1016/S1472-7862.
  • Uddin, M., F. Wright, S. Dallimore, and D. Coombe. 2014. Gas hydrate dissociations in Mallik hydrate bearing zones A, B, and C by depressurization: Effect of salinity and hydration number in hydrate dissociation. Journal of Natural Gas Science and Engineering 21:40–63. doi:10.1016/j.jngse.2014.07.027.
  • Wang, P.-F., H. Long, Y. Teng, Y.-L. Li, Y. Li, J.-B. Zhu, H.-P. Xie, S.-B. Han, Y.-S. Zhao, and J.-L. Zhu. 2024. Investigation of hydrogen-propane hydrate formation mechanism and optimal pressure range via hydrate-based hydrogen storage. Fuel 361:130791. doi:10.1016/j.fuel.2023.130791.
  • Wu, J.-P. 2021. Study on two non-rectangular simulation boxes for calculating diffusion coefficient in molecular dynamics simulation. North University of China . doi:10.27470/d.cnki.ghbgc.2020.001044.
  • Yuan, Q., C.-Y. Sun, X. Yang, Z.-W. Ma, P.-C. Ma, Q.-P. Li, and G.-J. Chen. 2011. Gas production from methane-hydrate-bearing sands by ethylene glycol injection using a three dimensional reactor. Energy & Fuels 25 (7):3108–15. doi:10.1021/ef200510e.
  • Zhang, H.-X., J.-Z. Xu, Z.-D. Li, X. Tian, W.-B. Meng, and D.-J. Wang. 2021. Effect of electrolytes on the self-protection of natural gas hydrate decomposition. Journal of Geophysics and Engineering 18 (4):482–91. doi:10.1093/jge/gxab029.
  • Zheng, J.-N., and M.-J. Yang. 2019. Phase equilibrium data of CO2eMCP hydrates and CO2 gas uptake comparisons with CO2eCP hydrates and CO2eC3H8 hydrates. Journal of Chemical & Engineering Data 64 (1):372–9. doi:10.1021/acs.jced.8b00893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.