38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Micro-fracture propagation and numerical simulation of fracture propagation under thermal simulation experiment of organic-rich shale: Chang-7 source rock in Yanchang, Ordos Basin

, ORCID Icon, &

References

  • Alber, M., and U. Hauptfleisch. 1999. Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. International Journal of Rock Mechanics and Mining Sciences 36 (8):1065–71. doi:10.1016/S1365-1609(99)00069-6.
  • Cao, Y., H. Han, C. Guo, P. Pang, Z-g Ding, and Y. Gao. 2020. Influence of extractable organic matters on pore structure and its evolution of Chang-7 member shales in the Ordos Basin, China: Implications from extractions using various solvents. Journal of Natural Gas Science and Engineering 79:103370. doi:10.1016/j.jngse.2020.103370.
  • Cardott, B., C. R. Landis, and M. E. Curtis. 2015. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway. International Journal of Coal Geology 139:106–13. v. doi:10.1016/j.coal.2014.08.012.
  • Chen, Z., Q. Guo, C. Jiang, X. Liu, J. Reyes, A. Mort, and Z. Jia. 2017. Source rock characteristics and Rock-Eval-based hydrocarbon generation kinetic models of the lacustrine Chang-7 Shale of Triassic Yanchang Formation, Ordos Basin, China. International Journal of Coal Geology 182:52–65. doi:10.1016/j.coal.2017.08.017.
  • DiStefano, V. H., J. McFarlane, L. M. Anovitz, A. G. Stack, A. D. Gordon, K. C. Littrell, S. J. Chipera, R. D. Hunt, S. A. Lewis, Sr., R. E. Hale, et al. 2016. Extraction of organic compounds from representative shales and the effect on porosity. Journal of Natural Gas Science and Engineering 35:646–60. doi:10.1016/j.jngse.2016.08.064.
  • Durand, B. 1988. Understanding of HC migration in sedimentary basins (present state of knowledge). Organic Geochemistry. 13 (1-3):445–59. doi:10.1016/0146–6380(88)90066–6.
  • England, W. A., A. S. Mackenzie, D. M. Mann, and T. M. Quigley. 1987. The movement and entrapment of petroleum flfluids in the subsurface. Journal of the Geological Society 144 (2):327–47. doi:10.1144/gsjgs.144.2.0327.
  • Eseme, E., B. M. Krooss, and R. Littke. 2012. Evolution of petrophysical properties of oil shales during high-temperature compaction tests: Implications for petroleum expulsion. Marine and Petroleum Geology 31 (1):110–24. doi:10.1016/j.marpetgeo.2011.11.005.
  • Fan, Z. Q., Z. -H. Jin, and S. E. Johnson. 2010. Subcritical propagation of an oil-filled penny-shaped crack during kerogen-oil conversion. Geophysical Journal International 182 (3):1141–7. doi:10.1111/j.1365–246X.2010.04689.x.
  • Figueiredo, B., C. F. Tsang, J. Rutqvist, and A. Niemi. 2017. Study of hydraulic fracturing processes in shale formations with complex geological settings. Journal of Petroleum Science and Engineering 152:361–74. doi:10.1016/j.petrol.2017.03.011.
  • Fu, P., S. M. Johnson, and C. R. Carrigan. 2013. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics 37 (14):2278–300. doi:10.1002/nag.2135.
  • Gangi, B. A. F. 1999. Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas. AAPG Bulletin 83(5):727-756. doi:10.2118/56989–PA.
  • Guo, X. W., S. He, L. J. Zhen, et al. 2011. Quantitative model of raw oil pressurization and influencing factors. Journal of Petroleum 32 (4):8. doi:10.7623/syxb201104011.
  • Han, H., P. Pang, Z-l Li, P-t Shi, C. Guo, Y. Liu, S-j Chen, J-g Lu, and Y. Gao. 2018. Controls of organic and inorganic compositions on pore structure of lacustrine shales of Chang-7 member from Triassic Yanchang Formation in the Ordos Basin, China. Marine and Petroleum Geology 100:270–84. doi:10.1016/j.marpetgeo.2018.10.038.
  • Hdta, B., and C. Mlz. 2020. Micro damage mechanics-based exponential power law acceleration of microscale damage and time-dependent crack propagation. Engineering Fracture Mechanics 229:106930. doi:10.1016/j.engfracmech.2020.106930.
  • Johnson, L. M., R. Rezaee, G. C. Smith, N. Mahlstedt, D. S. Edwards, A. Kadkhodaie, and H. Yu. 2020. Kinetics of hydrocarbon generation from the marine Ordovician Goldwyer Formation, Canning Basin, Western Australia. International Journal of Coal Geology 232:103623. doi:10.1016/j.coal.2020.103623.
  • Kalani, M., J. Jahren, N. H. Mondol, and J. I. Faleide. 2015. Petrophysical implications of source rock microfracturing. International Journal of Coal Geology 143:43–67. doi:10.1016/j.coal.2015.03.009.
  • Lash, G. G., and T. Engelder. 2005. An analysis of horizontal micro-fractureing during catagenesis: Example from the Catskill delta complex. AAPG Bulletin 89 (11):1433–49. doi:10.1306/05250504141.
  • Lei, Q., J. -P. Latham, J. Xiang, C. -F. Tsang, P. Lang, and L. Guo. 2014. Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock. International Journal of Rock Mechanics and Mining Sciences. 70:507–23. doi:10.1016/j.ijrmms.2014.06.001.
  • Leythaeuser, D., L. Schwark, and C. Keuser. 2000. Geological conditions and geochemical effects of secondary petroleum migration and accumulation. Marine and Petroleum Geology 17 (7):857–9. doi:10.1016/S0264–8172(00)00010–6.
  • Li, J., W. Ma, Y. Wang, D. Wang, Z. Xie, Z. Li, and C. Ma. 2018. Modeling of the whole hydrocarbon-generating process of sapropelic source rock. Petroleum Exploration and Development 45 (3):461–71. doi:10.1016/S1876-3804(18)30051-X.
  • Makeen, Y. M., W. H. Abdullah, M. J. Pearson, M. H. Hakimi, H. A. Ayinla, O. M. A. Elhassan, and A. M. Abas. 2016. History of hydrocarbon generation, migration and accumulation in the Fula sub-basin, Muglad Basin, Sudan: Implications of a 2D basin modeling study. Marine and Petroleum Geology 77:931–41. doi:10.1016/j.marpetgeo.2016.07.016.
  • Matthews, M. D. 1996. Migration–A view from the top. In Hydrocarbon Migration and its Near-Surface Expression: AAPG Memoir 66, ed. D. Schumacher and M. A. Abrams, 139–55. Tulsa: AAPG. doi:10.1306/M66606C11
  • Miao, J. Y., Z. Q. Zhu, W. R. Liu, and H. Y. Lu. 2004. Relationship between occurrence of organic matter and the primary migration of the hydrocarbon in argillaceous rock. Acta Sedimentol. Sin 22:169–75 (in Chinese with English abstract).
  • Momper, J. A. 1978. Oil migration limitations suggested by geological and geochemical consideration. In Physical and chemical constraints on petroleum migration, ed. W. H. Roberts and R. J. Cordell. Tulsa: AAPG.
  • Pang, Z. L., S. Z. Tao, Q. Zhang, et al. 2016. Experimental study on the secondary transport dynamics and resistance of tight oil – an example of Jurassic system in central Sichuan basin. Journal of China University of Mining and Technology 45 (4):11. doi:10.13247/j.cnki.jcumt.000449.
  • Qiu, X. W., and C. Y. Liu. 2014. Lake-basin fifilling types and development of high quality hydrocarbon source rocks in Ordos Basin in late Triassic Yanchang period. Acta Geosci. Sin 35:101–10. doi:10.3975/cagsb.2014.01.13.
  • Rodriguez Monreal, F., H. J. Villar, R. Baudino, D. Delpino, and S. Zencich. 2009. Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Marine and Petroleum Geology 26 (4):590–605. doi:10.1016/j.marpetgeo.2009.01.005.
  • Sone, H., and M. D. Zoback. 2013. Mechanical properties of shale-gas reservoir rocks—Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. GEOPHYSICS 78 (5):D393–D402. doi:10.1190/geo2013-0051.1.
  • Su, K., J. Lu, H. Zhang, S. Chen, Y. Li, Z. Xiao, W. Qiu, and M. Han. 2020. Quantitative study on hydrocarbon expulsion mechanism based on micro-fracture. Geoscience Frontiers 11 (6):1901–13. v doi:10.1016/j.gsf.2020.05.013.
  • Tang, X., J. Zhang, X. Wang, B. Yu, W. Ding, J. Xiong, Y. Yang, L. Wang, and C. Yang. 2014. Shale characteristics in the southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales. International Journal of Coal Geology 128-129:32–46. doi:10.1016/j.coal.2014.03.005.
  • Tissot, B. P., and D. H. Welte. 1984. Petroleum Formation and Occurrence, 340–5. New York: Springer-Verlag.
  • Wang, X. Z., Y. T. Song, and X. J. Wang. 1996. Physical simulation of petroleum formation and drainage: Methods, mechanisms and applications. Petroleum University Press.
  • Wu, Y., Z. Zhang, L. Sun, Y. Li, L. Su, X. Li, H. Xu, and Y. Tu. 2018. The effect of pressure and hydrocarbon expulsion on hydrocarbon generation during pyrolysis of continental type-III kerogen source rocks. Journal of Petroleum Science and Engineering 170:958–66. doi:10.1016/j.petrol.2018.06.067.
  • Xi, K., K. Li, Y. Cao, M. Lin, X. Niu, R. Zhu, X. Wei, Y. You, X. Liang, S. Feng, et al. 2020. Laminae combination and shale oil enrichment patterns of Chang-73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development 47 (6):1342–53. doi:10.1016/S1876-3804(20)60142-8.
  • Xie, X. N., S. T. Li, and Q. Y. Wang. 1997. Hydraulic rupture and curtain compaction of muddy rocks in sedimentary basins. Science Bulletin 42 (20):3. doi:10.1360/csb1997-42-20–2193.
  • Yang, H., X. B. Niu, L. M. Xu, et al. 2016. Exploration potential of shale oil in Chang-7 member, Upper Triassic Yanchang Formation. Ordos Basin, NW China. Petrol. Explor. Dev 43:560–9. doi:10.1016/S1876-3804(16)30066-0.
  • Yi, W., Q-h Rao, D-l Sun, Q-q Shen, and J. Zhang. 2021. A new integral equation method for calculating interacting stress-intensity factors of multiple holed-cracked anisotropic rock under both far-field and arbitrary surface stresses. International Journal of Rock Mechanics and Mining Sciences 148:104926. doi:10.1016/j.ijrmms.2021.104926.
  • Zhang, W. Z., and Q. Li, et al. 2017. Micro-fracture and pores in lacustrine shales of the Upper Triassic Yanchang Chang7 Member, Ordos Basin, China. Journal of Petroleum Science & Engineering. 156:194-201 doi:10.1016/j.petrol.2017.03.044.
  • Zhenglu, X., L. Jungang, L. Yong, Z. Huanxu, and C. Shijia. 2022. Oil generated overpressure of shale and its effect on tight sandstone oil enrichment: A case study of Yanchang Formation in the Ordos Basin, China. Journal of Petroleum Science and Engineering 219:111120. doi:10.1016/j.petrol.2022.11112.
  • Zhou, S., X. Zhuang, and T. Rabczuk. 2020. Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field. Theoretical and Applied Fracture Mechanics 107:102523. doi:10.1016/j.tafmec.2020.102523.
  • Zou, C., D. Dong, S. Wang, J. Li, X. Li, Y. Wang, D. Li, and K. Cheng. 2010. Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development 37 (6):641–53. doi:10.1016/S1876–3804(11)60001–3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.