Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 44, 2009 - Issue 14
4,233
Views
254
CrossRef citations to date
0
Altmetric
ARTICLES

Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review

Pages 1485-1495 | Received 25 Jun 2009, Published online: 10 Nov 2009

References

  • Hutchison , J. E. 2008 . Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology . ACSNano. , 2 ( 3 ) : 395 – 402 .
  • Aitken , R. J. , Chaudhary , M. Q. , Boxall , A. B. A. and Hull , M. 2006 . Manufacture and use of nanomaterials: Current status in the UK and global trends . Occup. Med. , 56 : 300 – 306 .
  • Brunet , L. , Lyon , D. Y. , Hotze , E. M. , Alvarez , P. J. I. and Wiesner , M. R. 2009 . Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles . Environ. Sci. Technol. , 43 : 4355 – 4360 .
  • Lowe , T. 2002 . The revolution in nanometals . Adv. Mater. Proc. , 160 : 63 – 65 .
  • Emerich , D. F. and Thanos , C. G. 2003 . Nanotechnology and medicine . Expert Opin. Biol. Ther. , 3 : 655 – 663 .
  • Doumanidis , H. 2002 . The manufacturing program at the National Science Foundation . Nanotechnology , 13 : 248 – 252 .
  • Mayland , A. D. 2006 . Nanotechnology: A Research Strategy for Addressing Risk , Washington, DC : Woodrow Wilson International Center for Scholars .
  • Nel , A. , Xia , T. , Madler , L. and Li , N. 2006 . Toxic potentials of materials at the nanolevel . Science , 311 : 622 – 627 .
  • Dahl , J. A. , Maddux , B. L. S. and Hutchison , J. E. 2007 . Toward greener nanosynthesis . Chem. Rev. , 107 : 2228 – 2269 .
  • Xia , T. , Kovochih , M. , Liong , M. , Madler , L. , Gilbert , B. , Shi , H. , Yeh , J. I. , Zink , J. I. and Nel , A. E. 2008 . Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties . ACSNano , 2 ( 10 ) : 2121 – 2134 .
  • Sharma , V. K. , Yngard , R. A. and Lin , Y. 2009 . Silver nanoparticles: Green synthesis and their antimicrobial activities . Adv. Coll. Int. Sci. , 145 : 83 – 96 .
  • Liang , G. , Pu , Y. , Yin , L. , Liu , R. , Ye , B. , Su , Y. and Li , Y. 2009 . Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress . J. Toxicol. Environ. Health Pt. A Curr. Issues , 72 : 740 – 745 .
  • Soto , K. , Garza , K. M. and Murr , L. E. 2007 . Cytoxic effects of aggregated nanomaterials . Acta Biomater. , 3 : 351 – 358 .
  • Soto , K. F. , Carrasco , A. , Powell , T. G. , Garza , K. M. and Murr , L. E. 2005 . Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy . J. Nanopart. Res. , 7 : 145 – 169 .
  • Soto , K. F. , Carrasco , A. , Powell , T. G. , Garza , K. M. and Murr , L. E. 2006 . Biological effects of nanoparticulate materials . Mater. Sci. Eng. , C26 : 1421 – 1427 .
  • Ivankovic , S. , Music , S. , Gotic , M. and Ljubesic , N. 2006 . Cytotoxicity of nanosize V2O5 particles to selected fibroblast and tumor cells . Toxicol. in Vitro , 20 : 286 – 294 .
  • Wigginton , N. S. , Haus , K. L. and Hochella , M. F. Jr. 2007 . Aquatic environmental particles . J. Environ. Monitor. , 9 : 1306 – 1316 .
  • Deer , W. A. , Howie , R. A. and Zussman , J. 1992 . An Introduction to the Rock Forming Minerals , Essex : Longman Group Limited .
  • nanoRoad . 2005 . Overview of Promising Nanomaterials for Industrial Applications http://www.nanoroad.net/download/overview_nanomaterials.pdf,”
  • 2007 . AmericanElements. Silver Nanoparticles http://www.americanelements.com/agnp.html
  • Nanoscale . 2007 . NanoActive Titanium Dioxide http://www.nanoscalecorp.com/producvts_and_services/specialty_chemicals/metal_oxides/?page=tio2
  • Chen , X. and Mao , S. S. 2007 . Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications . Chem. Rev. , 107 : 2891 – 2959 .
  • Wigginton , N. S. , Haus , K. L. and Hochella , M. F. 2007 . Aquatic environmental nanoparticles . J. Enviorn. Monitor. , 9 : 1306 – 1316 .
  • Kaegi , R. , Ulrich , A. , Sinnet , B. , Vonbank , R. , Wichser , A. , Zuleeg , S. , Simmler , H. , Brunner , S. , Vonmont , H. , Burkhardt , M. and Boller , M. 2008 . Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment . Environ. Pollut. , 156 : 233 – 239 .
  • Mueller , N. and Nowack , B. 2008 . Exposure modeling of engineered nanoparticles in the environment . Environ. Sci. Technol. , 42 : 4447 – 4453 .
  • Grassian , V. H. 2008 . When size really matters: Size-dependent properties and surface chemistry of metal and metal oxide naoparticles in gas and liquid phase environments . J. Phys. Chem. C , 112 : 18308 – 18313 .
  • Gao , J. , Youn , S. , Hovsepyan , A. , Llaneza , V. L. , Wang , Y. , Bitton , G. and Bonzongo , J-C. J. 2009 . Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition . Environ. Sci. Technol. , 43 ( 9 ) : 3322 – 3328 .
  • Balbus , J. M. , Maynard , A. D. , Colvin , V. L. , Castranova , V. , Daston , G. P. and Denison , R. A. 2007 . Meeting Report: Hazard assessment for nanoparticles—report from an interdisciplinary workshop . Environ. Health Perspect. , 115 : 1654 – 1659 .
  • Grassian , V. H. , Adamcakova-Dodd , A. , Pettibone , J. M. , O'Shaughnessy , P. T. and Thorne , P. S. 2007 . Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes . Nanotoxicology , 1 ( 3 ) : 211 – 226 .
  • Grassian , V. H. , O'Shaughnessy , P. T. , Adamcakova-Dodd , A. , Pettibone , J. M. and Thorne , P. S. 2007 . Inhalation exposure study of nanoparticulate titanium dioxide with a primary particle size of 2 to 5 nm . Environ. Health Perspect. , 115 : 397 – 402 .
  • Powers , K. W. , Brown , S. C. , Krishna , V. B. , Wasdo , S. C. , Moudgil , B. M. and Roberts , S. M. 2006 . Research strategies for safety evaluation of nanomaterials. Part V I Characterization of nanoscale particles for toxicological evaluation . Toxicol. Sci. , 90 : 296 – 303 .
  • Farre , M. , Gajda-Schrantz , K. , Kantiani , L. and Barcelo , D. 2009 . Ecotoxicity and nalysis of nanomaterials in the aquatic environment . Anal. Bioanal. Chem. , 393 : 81 – 95 .
  • Lecoanet , H. F. , Bottero , J. Y. and Wiesner , M. R. 2004 . Laboratory assessment of the mobility of nanomaterials in porous media . Environ. Sci. Technol. , 38 : 5164 – 5169 .
  • Ryan , J. N. and Elimelech , M. 1996 . Colloid mobilization and transport in groundwater . Coll. Surf. A , 107 : 1 – 56 .
  • Lecoanet , H. F. and Wiesner , M. R. 2004 . Velocity effects on fullerene and oxide nanoparticle deposition in porous media . Environ. Sci. Technol. , 38 : 4377 – 4382 .
  • Brant , J. , Lecoanet , H. and Wiesner , M. R. 2005 . Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems . J. Nanopart. Res. , 7 : 545 – 553 .
  • Guzman , K. A. D. , Finnegan , M. P. and Banfield , J. F. 2006 . Influence of surface potential on aggregation and transport of titania particles . Environ. Sci. Technol. , 40 : 7688 – 7693 .
  • Franch , T. A. , Burleson , D. J. , Driessen , M. D. and Penn , R. L. 2004 . On the characterization of environmental nanoparticles . J. Environ. Sci. Health Pt. A , A39 ( 10 ) : 2707 – 2753 .
  • Kosmulski , M. 2002 . The significance of the difference in the point of zero charge between rutile and anatase . Adv. Coll. Interface Sci. , 99 : 255 – 264 .
  • French , R. A. , Jacobson , A. R. , Kim , B. , Isley , S. L. , Penn , R. L. and Baveye , P. C. 2009 . Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles . Environ. Sci. Technol. , 43 : 1354 – 1359 .
  • Ghosh , S. , Mashayekhi , H. , Pan , B. , Bhowmik , P. and Xing , B. 2008 . Colloidal behavior of aluminum oxide nanoparticles as affected by pH and organic matter . Langmuir , 24 : 12385 – 12391 .
  • Hyung , H. , Fortner , J. D. , Hughes , J. B. and Kim , J. H. 2007 . Natural organic matter stabilizes carbon nanotubes in aqueous phase . Environ. Sci. Technol. , 41 : 179 – 184 .
  • Chiou , C. T. 2002 . Partition and Adsorption of Organic Contaminants in Environmental Systems , New York : John Wiley and Sons .
  • Yang , K. , Zhu , L. , Lou , B. and Chen , B. 2005 . Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties . Chemosphere , 61 : 116 – 128 .
  • Yang , K. , Lin , D. and Xing , B. 2009 . Interaction of humic acid with nanosize inorganic oxides . Langmuir , 25 : 3571 – 3676 .
  • Wang , X. , Lu , J. and Xing , B. 2008 . Sorption of organic matter by carbon nanotubes: Influence of adsorbed organic matter . Environ. Sci. Technol. , 42 : 3207 – 3212 .
  • Wang , X. , Lu , J. , Xu , M. and Xing , B. 2008 . Sorption of pyrene by regular and nanoscale metal oxide particles: Influence of adsorbed organic matter . Environ. Sci. Technol. , 42 : 7267 – 7272 .
  • Hyung , H. and Kim , J. H. 2008 . Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes; Effect of NOM characteristics and water quality parameters . Environ. Sci. Technol. , 42 : 4416 – 4421 .
  • Tipping , E. and Higgins , D. C. 1982 . The effect of adsorbed humic substances on the colloidal stability of haemitite particles . Coll. Surf. , 5 : 85 – 92 .
  • Pettibone , J. M. , Cwietny , D. M. , Scherer , M. and Grassian , V. H. 2008 . Adsorption of organic acids on TiO2 particle aggregation . Langmuir , 24 : 6659 – 6667 .
  • Domingos , R. F. , Tufenki , N. and Wilkinson , K. J. 2009 . Aggregation of titanium dioxide nanparticles: Role of fulvic acid . Environ. Sci. Technol. , 43 : 1282 – 1286 .
  • Joo , S. H. , Al-abed , S. R. and Luxton , T. 2009 . Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands . Environ. Sci. Technol. , 43 : 4954 – 4959 .
  • Dudev , T. and Lim , C. 2007 . Effect of carboxylate-binding mode on metal binding/slectivity and function in proteins . Acc. Chem. Res. , 40 : 85 – 93 .
  • Yao , K. M. , Habibian , M. M. and Omelia , C. R. 1971 . Water and waste water filtration: Concepts and applications . Environ. Sci. Technol. , 5 : 1105 – 1109 .
  • Peverill , K. I. , Sparrow , L. A. and Reuter , D. J. 1995 . Soil Analyst: An Introduction Manual , 365 Victoria, , Australia : CSIRO Publishing .
  • Pulskamp , K. , Diabate , S. and Krug , H. F. 2007 . Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species on dependence on contaminants . Toxicol. Lett. , 168 : 58 – 74 .
  • Tinkle , S. S. , Antonini , J. M. , Rich , B. A. , Roberts , J. R. , Salmen , R. , DePree , K. and Akkins , E. J. 2003 . Skin: as a route of exposure and sensitization of chronic beryllium disease . Environ. Health Perspec. , 111 : 1202 – 1208 .
  • Bennat , C. and Muller-Goymann , C. C. 2000 . Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter . Int. J. Cosmet. Sci. , 22 : 271 – 283 .
  • Tsujii , J. S. , Mayland , A. D. , Howard , P. C. , James , J. T. , Lam , C. , Warheit , D. B. and Santamariak , A. B. 2006 . Research stragies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles . Toxicol. Sci. , 89 : 42 – 50 .
  • Afaq , F. , Abidi , P. , Matin , R. and Rahman , Q. 1998 . Cytotoxicty, pro-oxidant effects and antitoxidant depletion in rat lung alveolar macrophage exposed to Ultrafine titanium dioxide . J. Appl. Toxicol. , 18 : 307 – 312 .
  • Peters , K. , Unger , R. E. , Kirkpatrick , C. J. , Gatti , A. M. and Monari , E. 2004 . Effects of nanoscale particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation . J. Mater. Sci. Mater. Med. , 15 : 321 – 325 .
  • Limbach , L. K. , Wick , P. , Manser , P. , Grass , R. N. , Bruinink , A. and Stark , W. J. 2007 . Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalyst activity on oxidative stress . Environ. Sci. Technol. , 41 : 4158 – 4163 .
  • Long , T. C. , Saleh , N. , Tilton , R. D. , Lowry , G. V. and Veronesi , B. 2006 . Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity . Environ. Sci. Technol. , 40 : 4346 – 4352 .
  • Montellier , C. , Tran , L. , MacNee , W. , Faux , S. , Jones , A. and Miller , B. 2007 . The pro-inflammatory effects of low-toxicity surface area particles, on epithelial cells in vitro: the role of low-solubility particles, nanoparticles and fine . Occup. Environ. Med. , 64 : 609 – 615 .
  • Simm , A. and Bromme , H. 2005 . Reactive oxygen species (ROS) and aging: do we need them—can we measure them-should we block them? . Signal Transduct , 3 : 115 – 125 .
  • Warmer , W. G. , Yin , J. J. and Wei , R. R. 1997 . Oxidative damage to nucleic acids photosensitized by titanium dioxide . Free Radical Biol. Med. , 23 : 851 – 858 .
  • Gurr , J.-R. , Wang , A. S. , Chen , C.-H. and Jan , K.-Y. 2005 . Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells . Toxicology , 213 : 66 – 73 .
  • Brunet , L. , Lyon , D. Y. , Hotze , E. M. , Alvarez , P. J. and Wiesner , M. R. 2009 . Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles . Environ. Sci. Technol. , 43 : 4356 – 4360 .
  • Afaq , F. , Abidi , P. , Matin , R. and Rahman , Q. 1998 . Cytotoxicity, prooxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide . J. Appl. Toxicol. , 18 : 307 – 312 .
  • Renwick , L. C. , Donaldson , K. and Clouter , A. 2001 . Impairment of alveolar macrophage phagocytosis by ultrafine particles . Toxicol. Appl. Pharmacol. , 172 : 119 – 127 .
  • Beck-Speier , I. , Dayal , N. , Karg , E. , Maier , K. L. , Roth , C. , Ziesenis , A. and Heyder , J. 2001 . Agglomeration of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages . Environ. Health Perspect. , 109 ( Suppl 4 ) : 613 – 618 .
  • Ramires , P. A. , Romito , A. , Cosentino , F. and Milella , E. 2001 . The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behavior . Biomaterials , 22 : 1467 – 1474 .
  • Zhang , A. P. and Sun , Y. P. 2004 . Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells . World J. Gastroenterol , 10 : 3191 – 3193 .
  • Hussain , S. M. , Hess , K. L. , Gearhart , J. M. , Geiss , K. T. and Schlager , J. J. 2005 . In vitro toxicity of nanoparticles in BRL 3A rat liver cells . Toxicol. In Vitro , 19 : 975 – 983 .
  • Reeves , F. J. , Davies , S. J. , Dodd , N. J. F. and Jha , A. N. 2008 . Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticles-induced cytotoxicity and oxidative DNA damage in fish cells . Mutat Res. , 640 : 113 – 122 .
  • Aruoja , V. , Dubourguier , H.-C. , Kasemets , K. and Kahru , A. 2009 . Toxicity of CuO, ZnO, and TiO2 to microalgae Pseudokirchneriella subcapitata . Sci. Total Environ. , 407 : 1461 – 1468 .
  • Jin , C.-Y. , Zhu , B.-S. , Wang , X.-F. and Lu , Q.-H. 2008 . Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells . Chem. Res. Toxicol. , 21 : 1871 – 1877 .
  • Wamer , W. G. , Yin , J. J. and Wei , R. R. 1997 . Oxidative damage to nucleic acids photosensitized by titanium dioxide . Free Radical. Biol. Med. , 23 : 851 – 858 .
  • Adams , L. K. , Lyon , D. Y. and Alvarez , P. J. J. 2006 . Comparative eco-toxicity of nanoscale TiO2 SiO2, and ZnO water suspensions . Water Res. , 40 : 3527 – 3532 .
  • Heinlaan , M. , Ivask , A. , Blinova , I. , Dubourguier , H.-C. and Kahru , A. 2008 . Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna Thamnocephalus platyurus . Chemosphere , 71 : 1308 – 1316 .
  • Hund-Rinke , K. and Simon , M. 2006 . Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphinds . Environ. Sci. Pollut. Res. Int. , 13 : 225 – 232 .
  • Huang , C. P. , Cha , D. K. and Ismat , S. S. 2005 . Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton http://cfpub.epa.gov/ncer_abstract/index.cfm/fuseaction/display.abstractDetail/abstract/7384/report/OEPA Grant number: R831721
  • Drobne , D. , Jemec , A. and Tkalec , Z. P. 2009 . In vivo screening to determine hazards on nanoparticles: Nanosized TiO2 . Environ. Pollut. , 157 : 1157 – 1164 .
  • Baun , A. , Hartmann , N. B. , Grieger , K. and Kusk , K. O. 2008 . Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing . Ecotoxicology , 17 : 387 – 395 .
  • Wang , H. , Wick , R. L. and Xing , B. 2009 . Toxicity of nanoparticulate and bulk ZnO, Al2O3, and TiO2 to the nematode Caenorhabditis elegans . Enviorn. Pollut. , 157 : 1171 – 1177 .
  • Federici , G. , Shaw , B. J. and Handy , R. D. 2007 . Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects . Aquat. Toxicol. , 84 : 415 – 430 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.