Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 8
430
Views
35
CrossRef citations to date
0
Altmetric
ARTICLES

Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli

, , &
Pages 871-878 | Received 06 Jan 2012, Published online: 13 Mar 2013

References

  • Stoimenov , P. K. , Klinger , R. , Marchin , G. L. and Klabunde , K. J. 2002 . Metal oxide nanoparticles as bactericidal agents . Langmuir , 18 ( 17 ) : 6679 – 6687 .
  • Sadiq , I. M. , Chowdhury , B. , Chandrasekaran , N. and Mukherjee , A. 2009 . Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles . Nanomedicine , 5 : 282 – 286 .
  • Applerot , G. , Lellouche , J. , Lipovsky , A. , Nitzan , Y. , Lubart , R. , Gedanken , A. and Banin , E. 2012 . Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of Induced oxidative stress . Small , doi: 10.1002/smll.201200772
  • Jin , Z. T. and He , Y. 2012 . Antibacterial activities of magnesium oxide (MgO) nanoparticles against food borne pathogens . J. Nanopart. Res. , 13 : 6877 – 6885 .
  • Li , Y. , Zhang , W. , Niu , J. and Chen , Y. 2012 . Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles . ACS Nano , 6 : 5164 – 5173 .
  • Sunada , K. , Watanabe , T. and Hashimoto , K. 2003 . Studies on photokilling of bacteria on TiO2 thin film . J. Photochem. Photobiol. A , 156 : 227 – 233 .
  • Raghupati , K. R. , Koodaali , R. T. and Manna , A. C. 2011 . Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles . Langmuir , 27 : 4020 – 4028 .
  • Reddy , K. M. , Feris , K. , Bell , J. , Wingett , D. , Hanley , C. and Punnoose , A. 2007 . Selective toxicity of zinc oxide nanoparticles to gram positive and gram negative bacterial systems . Appl. Phys. Lett. , 90 : 2139021–2139023
  • Huang , Z. , Zheng , X. , Yan , D. , Yin , G. , Liao , X. , Kang , Y. , Yao , Y. , Huang , D. and Hao , B. 2008 . Toxicological effect of ZnO nanoparticles based on bacteria . Langmuir , 24 : 4140 – 4144 .
  • Dutta , R. K. , Nenavathu , B. P. , Gangishetty , M. K. and Reddy , A. V.R. 2012 . Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation . Coll. Surf. B , 94 : 143 – 150 .
  • Monteiro-Riviere , N. A. , Wiench , K. , Landseidel , R. , Schulte , S. , Inman , A. O. and Riviere , J. E. 2011 . Safety evaluation of sunscreen formulation containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in-vivo study . Toxicol. Sci , 123 : 264 – 280 .
  • Rosi , N. L. and Mirkin , C. A. 2005 . Nanostructures in biodiagnostics . Chem. Rev. , 105 : 1547 – 1562 .
  • Kamat , P. V. and Meisel , D. 2003 . Nanoscience opportunities in environmental remediation . CR Chim , 6 : 999 – 1007 .
  • Borm , P. J. and Kreyling , W. 2004 . Toxicological hazards of inhaled nanoparticles: potential implication of drug delivery . J. Nanosci. Nanotechnol , 4 : 521 – 531 .
  • Premanathan , M. , Karthikeyan , K. , Jeyasubramanian , K. and Manivannan , G. 2004 . Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation . Nanomedicine , 7 : 184 – 192 .
  • Jeng , H. A. and Swanson , J. 2006 . Toxicity of metal oxide nanoparticles in mammalian cells . J. Environ. Sci. Health Pt. A , 41 : 2699 – 2711 .
  • Sawai , J. , Kawada , E. , Kanou , F. , Igarashi , H. , Hashimoto , A. , Kokugan , T. and Shimizu , M. 1996 . Detection of active oxygen generated from ceramic powders having antibacterial activity . J. Chem. Eng. Jpn. , 29 : 627 – 633 .
  • Lipovsky , A. , Tzitrinovich , Z. , Friedmann , H. , Applerot , G. , Gedanken , A. and Lubart , R. 2009 . EPR study of visible light-induced ROS generation by nanoparticles of ZnO . J. Phys. Chem. C , 113 : 15997 – 16001 .
  • Padmavathy , N. and Vijayraghavan , R. 2008 . Enhanced bioactivity of ZnO nanoparticles–An antimicrobial study . Sci. Technol. Adv. Mater , 9 Article No. 035004
  • Brayner , R. , FerrariIliou , R. , Brivois , N. , Djediat , S. , Benedetti , M. F. and Fiévet . 2006 . Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium . Nano Lett. , 6 : 866 – 870 .
  • Kao , Y. Y. , Chen , Y. C. , Cheng , T. J. , Chiung , Y. M. and Liu , P. S. 2012 . Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity . Toxicol. Sci. , 125 : 462 – 472 .
  • Zhang , L. , Jiang , Y. , Ding , Y. , Daskalakis , N. , Jeuken , L. , Povey , M. , O’Neill , A. J. and York , D. W. 2009 . Mechanistic investigation into antibacterial behavior of suspensions of ZnO nanoparticles against E. coli . J. Nanopart. Res. , 12 : 1625 – 1636 .
  • Rael , L. T. , Thomas , G. W. and Craun , M. L. 2004 . Lipid peroxidation and the thiobarbituric acid assay: standardization of the assay when using saturated and unsaturated fatty acids . J. Biochem. Mol. Biol. , 37 : 749 – 752 .
  • Keller , A. A. , Wang , H. , Zhou , D. , Lenihan , H. S. , Cherr , G. , Cardinale , B. J. , Miller , R. and Ji , Z. 2010 . Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices . Environ. Sci. Technol. , 44 ( 6 ) : 1962 – 1967 .
  • Kim , Y. S. , Song , M. Y. , Park , J. D. , Song , K. S. , Ryu , H. R. , Chang , H. K. , Lee , J. , Oh , K. H. , Kelman , B. J. and Hwang , I. 2010 . Sub chronic oral toxicity of silver nanoparticles . Part. Fibre. Toxicol. , 7 : 20 – 30 .
  • Yu , S. , Rui , Q. , Cai , T. , Wu , Q. , Li , Y. and Wang , D. 2011 . Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle . Environ. Toxicol. Pharmacol. , 32 : 233 – 241 .
  • Applerot , G. , Lipovsky , A. , Dror , R. , Perkas , N. , Nitzan , Y. , Lubart , R. and Gedanken , A. 2009 . Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury . Adv. Funct. Mater. , 19 : 842 – 852 .
  • Leutner , S. , Eckert , A. and Müller , W. E. 2001 . ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain . J. Neural. Transm. , 108 : 955 – 967 .
  • Yang , Z. and Xie , C. 2006 . Zn2+ release from zinc and zinc oxide particles in simulated uterine solution . Coll. Surf. B , 47 ( 2 ) : 140 – 145 .
  • Kawano , T. and Imai , H. 2006 . Fabrication of ZnO Nanoparticles with various aspect ratios through acidic and basic routes . Cryst. Growth Des. , 6 : 1054 – 1056 .
  • Shao-Wei , B. , Mudunkotuwa , I. A. , Rupasinghe , T. and Grassian , V. H. 2011 . Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic acid . Langmuir , 27 : 6059 – 6068 .
  • Xia , T. , Kovochich , M. , Liong , M. , Madler , L. , Gilbert , B. , Shi , H. , Yeh , J. I. , Zink , J. I. and Nel , A. E. 2008 . Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties . ACS Nano. , 2 : 2121 – 2134 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.