Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 10
317
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Biocatalytic spectrophotometric method to detect paracetamol in water samples

, , , &
Pages 1046-1056 | Received 17 Dec 2014, Published online: 29 Jun 2015

References

  • Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159.
  • Khetan, S.K.; Collins, T.J. Human pharmaceuticals in the aquatic environment:  A challenge to green chemistry. Chem. Rev. 2007, 107, 2319–2364.
  • Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci Total Environ. 2012, 429, 123–155.
  • Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ. 2004, 328, 119–130.
  • Bedner, M.; MacCrehan, W.A. Transformation of Acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ. Sci. Technol. 2005, 40, 516–522.
  • Glassmeyer, S.T.; Shoemaker, J.A. Effects of chlorination on the persistence of pharmaceuticals in the environment. Bull. Environ. Contam. Toxicol. 2005, 74, 24–31.
  • Ashton, D.; Hilton, M.; Thomas, K.V. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. 2004, 333, 167–184.
  • Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Determination of paracetamol: Historical evolution. J. Pharm. Biomed. Anal. 2006, 42, 291–321.
  • Rodriguez-Mozaz, S.; Lopez de Alda, M.; Barceló, D. Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041.
  • Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectro. 2006, 21, 1405–1423.
  • Lloret, L.; Eibes, G.; Lú-Chau, T.A.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Eng. J. 2010, 51, 124–131.
  • Wen, X.; Jia, Y.; Li, J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus. Chemosphere 2009, 75, 1003–1007.
  • Wen, X.; Jia, Y.; Li, J. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177, 924–928.
  • Lloret, L.; Eibes, G.; Moreira, M.T.; Feijoo, G.; Lema, J.M. On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs). J. Mol. Catal. B Enzym. 2013, 97, 233–242.
  • Suzuki, K.; Hirai, H.; Murata, H.; Nishida, T. Removal of estrogenic activities of 17β-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res. 2003, 37, 1972–1975.
  • Cordeiro, D.D.; Gil, E.D. Laccase-based biosensor for determination of acetaminophen. Lat. Am. J. Pharm. 2011, 30, 599–603.
  • González-Sánchez, M.I.; Rubio-Retama, J.; López-Cabarcos, E.; Valero, E. Development of an acetaminophen amperometric biosensor based on peroxidase entrapped in polyacrylamide microgels. Biosens. Bioelectron. 2011, 26, 1883–1889.
  • Guo, M.; Yang, Y.; Wang, Z.; Shen, G.; Yu, R.A. Mediator-free horseradish peroxidase biosensor based on Concanavalin A. Chin. J. Anal. Chem. 2006, 34, 399–403.
  • Yu, D.; Renedo, O.D.; Blankert, B.; Sima, V.; Sandulescu, R.; Arcos, J.; Kauffmann, J.M. A peroxidase-based biosensor supported by nanoporous magnetic silica microparticles for acetaminophen biotransformation and inhibition studies. Electroanalysis 2006, 18, 1637–1642.
  • Wang, K.; Liu, P.C.; Ye, Y.H.; Li, J.; Zhao, W.B.; Huang, X.H. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens. Actuat. B-Chem. 2014, 197, 292–299.
  • Oliveira, G.C.; Moccelini, S.K.; Castilho, M.; Terezo, A.J.; Possavatz, J.; Magalhães, M.R.L.; Dores, E.F.G.C. Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta 2012, 98, 130–136.
  • Vandertol-Vanier, H.A.; Vazquez-Duhalt, R.; Tinoco, R.; Pickard, M.A. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase. J. Ind. Microbiol. Biotech. 2002, 29, 214–220.
  • Arias, M.E.; Arenas, M.; Rodríguez, J.; Soliveri, J.; Ball, A.S.; Hernández, M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl. Environ. Microbiol. 2003, 69, 1953–1958.
  • Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52(7), 1757–1768.
  • Leiros, H.K.S.; Timmins, J.; Ravelli, R.B.G.; McSweeney, S.M. Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? Acta Crystallogr. Sect. D-Biol. Crystallogr. 2006, 62, 125–132.
  • Schrodinger, L.L.C. The PyMOL Molecular Graphics System, Version 1.3r1; 2010. Schrödinger, LLC: New York, NY, 2015.
  • Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput-Aided Mol. Des. 2010, 24, 417–422.
  • Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
  • Yotova, L.; Yaneva, S.; Marinkova, D.; Serfaty, S. Co-immobilization of peroxidase and tyrosinase onto hybrid membranes obtained by the sol-gel method for the construction of an optical biosensor. Biotechnol. Biotechnol. Equip. 2013, 27, 3885–3889.
  • Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the FungusTrametes versicolor at 1.90-Å resolution containing a full complement of coppers. J. Biol. Chem. 2002, 277, 37663–37669.
  • Prasad, N.; Vindal, V.; Narayana, S.L.; Ramakrishna, V.; Kunal, S.P.; Srinivas, M. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes. J. Mol. Model. 2012, 18, 2013–2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.