Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 12
101
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Efficient removal of mercury from aqueous solutions and industrial effluent

, , , , , & show all
Pages 1230-1240 | Received 11 Dec 2014, Published online: 24 Aug 2015

References

  • United Nations Environment Program. Mercury–time to act. Available at www.unep.org/PDF/PressReleases/Mercury_TimeToAct.pdf (accessed Jan 2014).
  • Soltan, A.M; Taman, Z.; El-Kaliouby, B. Recycling of ornamental stones hazardous wastes. Nat. Res. 2011, 2, 244–249.
  • Kwon, J.; Yun, S.; Lee, J.; Soon, -O.K.; Jo, H.Y. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption. J. Hazard. Mater. 2010, 174(1–3), 307–313.
  • Kong, H.; He, J.; Wu, H.; Wu, H. Phenanthrene removal from aqueous solution on sesame stalk-based carbon. Clean Soil Air Water 2012, 40(7), 752–759.
  • Panthi, S.R.; Wareham, S.R. Kinetic study of adsorption of arsenic onto New Zealand Ironsand (NZIS). J. Environ. Sci. Health Pt. A 2014, 49(13), 1474–1480.
  • Rahman, N.; Sato, N.; Sugiyama, M.; Hidaka, Y.; Okabe, H.; Hara, K.Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films. J. Environ. Sci. Health, Part. A, 2014, 49(7), 798–806.
  • Brazilian Association of Technical Norms. 10007—Sampling of solid waste. ABNT: Rio de Janeiro, 2004; 1–25 (in Portuguese).
  • United States Environmental Protection Agency. Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Available at www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7473.pdf (accessed Jul 2013).
  • United States Environmental Protection Agency. Inductively coupled plasma-atomic emission spectrometry. Available at www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf (accessed Jul 2013).
  • United States Environmental Protection Agency. Determination of inorganic anions by ion chromatography. Available at www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9056a.pdf (accessed Jul 2013).
  • Brazilian Association of Technical Norms. 10004 - Solid waste classification. ABNT, Rio de Janeiro, 2004; 1–77 (in Portuguese).
  • Brazilian Association of Technical Norms. 10005 - Procedure for obtention leaching extract of solid wastes. ABNT, Rio de Janeiro, 2004; 1–20 (in Portuguese).
  • Brazilian Association of Technical Norms. 10006 - Procedure for obtention of solubilized extraction of solid wastes. ABNT, Rio de Janeiro, 2004; 1–7 (in Portuguese).
  • Chutia, P.; Shigeru, K.; Kojima, T.; Satokawa, S. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 2009, 162(1), 440–447.
  • Ranganathan, K. Adsorption of Hg(II) ions from aqueous chloride solutions using powdered activated carbons. Carbon. 2003, 41(5), 1087–1092.
  • Gebremedhin-Haile, T.; Olguín, M.T.; Solache-Ríos, M. Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Poll. 2003, 148(1–4), 179–200.
  • Puanngam, M.; Unob, F. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. J. Hazard. Mater. 2008, 154(1–3), 578–587.
  • Bridelli, M.G.; Crippa, P.R. Theoretical analysis of the adsorption of metal ions to the surface of melanin particles. Adsorption 2008, 14(1), 101–109.
  • Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156(1), 2–10.
  • Grohmann, F. Specific surface area of soils of the state of São Paulo II-The influence of organic mattes, free iron oxides and exchangeable cation on the total surface area of the soil. Bragantia 1972, 31, 167–185.
  • Englert A.H; Rubio, J. Characterization and environmental application of a Chilean natural zeolite. Int. J. Miner. Process. 2005, 75, 21–29.
  • Deepatana, A.; Valix, M. Comparative adsorption isotherms and modeling of nickel and cobalt citrate complexes onto chelating resins. Desalination 2008, 218(1–3), 334–342.
  • Zolgharnein, J.; Shahmoradi, A. Characterization of sorption isotherms, kinects models, and multivariate approach for optimization of Hg(II) adsorption onto fraxinus tree leaves. J. Chem. Eng. Data 2010, 55(11), 5049–5049.
  • Shadbad, M.J.; Mohebbi, A.; Soltani, A. Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Kor. J. Chem. Eng. 2011, 28(4), 1029–1034.
  • Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of pollutant sorption biosorbents: Review. Separ. Purif. Method. 2000, 29(2), 189–232.
  • Kim, C.S.; Rytuba, J.J.; Brown Jr, G.E. EXAFS study of mercury (II) to sorption to Fe-and Al-(hydr)oxides. I Effects of pH. J. Coll. Interf. Sci. 2004, 271(1), 1–15.
  • Ofomaja, A.E. Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour. Technol. 2010, 101(15), 5868–5876.
  • McKay, G.; Allen, S.J.; Conven, I.L.; Otteburn, M.S. Transport processes in the sorption of colored ions by peat particles. J. Coll. Interf. Sci. 1981, 80(2), 323–339.
  • Mohan, D.; Singh, K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36(9), 2304–2318.
  • Sarkar, M.; Acharya, P.K.; Bhattacharya, B. Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. J. Coll. Interf. Sci. 2003, 266(1), 28–32.
  • Boyd, G.E.; Schubert, J.; Adamson, A.W. The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-exchange equilibria. J. Am. Chem. Soc. 1947, 69(11), 2818–2829.
  • Wu, F.C.; Tseng, R.L.; Juang, R.S. Initial behavior of intraparticle diffusion model used in the description of adsorption. Chem. Eng. J. 2009, 153(1–3), 1–8.
  • Hu, X.; Wang, J.; Liu, Y.; Li, X.; Zheng, G.; Bao, Z.; Zeng, X.; Chen, A.; Long, F. Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 2011, 185(1), 306–314.
  • Reichenberg, D.J. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 1953, 75(3), 589–597.
  • Bao, J.; Fu, Y.; Bao, Z. Thiol-functionalized magnetite/graphene oxide hybrid as a reusable adsorbent for Hg2+ removal. Nanosci. Res. Lett. 2013, 8(1), 486–491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.