Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 13
645
Views
12
CrossRef citations to date
0
Altmetric
ARTICLES

Photocatalytic degradation of methyl blue by silver ion-doped titania: Identification of degradation products by GC-MS and IC analysis

&
Pages 1333-1341 | Received 16 Mar 2015, Published online: 31 Jul 2015

References

  • Al Kdasi, A.; Idris, A.; Saed, K.; Guan, C.T. Treatment of textile wastewater by advanced oxidation process—A review. Global Nest. 2004, 6(3), 222–230.
  • Ruiz, E.J.; Ramirez, A.H.; Hernandez, J.M.P.; Arias, C.; Brillas, E. Application of solar photo electro-Fenton technology to azo dyes mineralization: Effect of current density, Fe2+ and dye concentrations. Chem. Eng. J. 2011, 171, 385–392.
  • Gupta, A.K.; Pal, A.; Sahoo, C. Photocatalytic degradation of a mixture of crystal violet (basic violet 3) and methyl red dye in aqueous suspensions using Ag+ doped TiO2. Dyes Pigm. 2006, 69, 224–232.
  • Cesaro, A.; Naddeo, V.; Belblorno, A. Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. J. Bioremed. Biodeg. 2013, 4(8), 1–8.
  • Xia, H.; Zhuang, H.; Xiao, D.; Zhang, T. Photocatalytic activity of La3+/S/TiO2 photocatalyst under visible light. J. Alloys Compnds. 2008, 465, 328–332.
  • Konstantinou, I.K.; Albanis, T.A. TiO2 assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B: Environ. 2004, 49, 1–14.
  • Zhang, X.; Sun, D.D.; Li, G.; Wang, Y. Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp. J. Photochem. Photobiol. A: Chem. 2008, 199(2), 311–315.
  • Korbahti, B.K.; Rauf, M.A. Response surface methodology (RSM) analysis of photo induced decoloration of toluidine blue. Chem. Eng. J. 2008, 136, 25–30.
  • Sharma, S.K.; Bhunia, H.; Bajpai, P.K. Photocatalytic decolorization kinetics and mineralization of reactive black 5 aqueous solution by UV/TiO2 nanoparticles, Clean Soil Air Water 2012, 40, 1290–1296.
  • Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S. Surfactant aided sol-gel synthesis of mesoporous assembled TiO2-NiO mixed oxide nanocrystals and their photocatalytic azo dye degradation activity. Chem. Eng. J. 2012, 192, 292–300.
  • Tayade, R.J.; Surolia, P.K.; Kulkarni, R.G.; Jasra, R.V. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Advan. Mater. 2007, 8, 455–462.
  • Sivalingam, G.; Nagaveni, K.; Hegde, M.S.; Madras, G.P. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl. Catal. B: Environ. 2003, 45(1), 23–38.
  • Mandal, S.S.; Bhattacharyya, A.J. Titania nanowires as substrates for sensing and photocatalysis of common textile industry effluents. Talanta 2010, 82(3), 876–884.
  • Wilson, W.; Manivannan, A.; Subramanian, V.R. Heterogeneous photocatalytic degradation of recalcitrant pollutants over CDS-TiO2 nanotubes: Boosting effect of TiO2 nanoparticles at nanotube-CDS interface. Appl. Catal. A: Gen. 2012, 441–442, 1–9.
  • Wang, H.; Quan, X.; Yu, H.; Chen, S. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon 2008, 46, 1126–1132.
  • Zhao, S.; Li, J.; Wang, L.; Wang, X. Degradation of rhodamine B and safranin T by MoO3:CeO2 nanofibers and air using a continuous mode. Clean Soil Air Water. 2010, 38, 268–274.
  • Sahoo, C.; Gupta, A.K. Application of statistical experimental design to optimize the photocatalytic degradation of a thiazin dye using silver ion doped titanium dioxide. J. Environ. Sci. Health Pt. A 2013, 48, 694–705.
  • Sahoo, C.; Gupta, A.K. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J. Hazard. Mater. 2012, 215–216, 302–310.
  • Gupta, A.K.; Sahoo, C. Treatment of industrial wastewater. In Recent Trends in Modelling of Environmental Contaminants; Sengupta. D., Eds; Springer India: New Delhi, 2014; 143–165.
  • Sohrabi, M.R.; Ghavami, M. photocatalytic degradation of direct red 23 dye using UV/TiO2: Effect of operational parameters. J. Hazard. Mater. 2008, 153, 1235–1239.
  • Hu, C.; Yu, J.C.; Hao, Z.; Wong, P.K. Photocatalytic degradation of triazine containing azo dyes in aqueous TiO2 suspensions. Appl. Catal. B: Environ. 2003, 42(1), 47–55.
  • Mahmoodi, N.M.; Arami, M.; Limaee, N.Y. Photocatalytic degradation of triazinic ring containing azo dye (reactive red 198) by using immobilized TiO2 photoreactor: bench scale study. J. Hazard. Mater. 2006, 133, 113–118.
  • Fathinia, M.; Khataee, A.R.; Zarei, M.; Aber, S. Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: Effect of dye molecular structure and response surface approach. J. Mol. Catal. A: Chem. 2010, 333, 73–84.
  • Ramli, R.M.; Chong, F.K.; Omar, A.A.; Murugesan, T. Performance of surfactant assisted synthesis of Fe/TiO2 on the photodegradation of diisopropanolamine. Clean Soil Air Water. 2015, 43(5), 690–697.
  • Sahoo, C.; Gupta, A. K.; Pal, A. Photocatalytic degradation of methyl red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalination 2005, 181, 91–100.
  • Sigma. MSDS for methyl blue, Sigma-Aldrich. 2015, version 5.1.
  • Sahoo, C.; Gupta, A.K.; Pal, A. Photocatalytic degradation of crystal violet (C.I. basic violet 3) on silver ion doped TiO2. Dyes Pigmen 2005, 66, 189–196.
  • Sahoo, C.; Gupta, A.K.; Pillai, I.M.S. Heterogeneous photocatalysis of real textile wastewater: Evaluation of reaction kinetics and characterization. J. Environ. Sci. Health A 2012, 47, 2109–2119.
  • Sahoo, C.; Gupta, A.K.; Pillai, I.M.S. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion doped TiO2 and its application to the degradation of real textile wastewater. J. Environ. Sci. Health A 2012, 47, 1428–1438.
  • Sahoo, C.; Gupta, A. K. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light. J. Environ. Sci. Health A 2015, 50, 659–668.
  • American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; Eaton, A.D.; Clesceri, L.S.; Rice, E. W.; Greenberg, A.E.; Eds.; American Public Health Association: Washington, DC, 2005; 5-14–5-19.
  • Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compnds. 2011, 509, 1648–1660.
  • Boxi, S.S.; Paria, S. Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light. RSC Adv. 2014, 4, 37752–37760.
  • Al-Arfaj, E.A. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants. Super Latt. Microstruct. 2013, 62, 285–291.
  • Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27.
  • Tayade, R.J.; Natarajan, T.S.; Bajaj, H.C. Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind. Eng. Chem. Res. 2009, 48, 10262–10267.
  • Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2 based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529.
  • Zhang, J.; Fu, D.; Xu, Y.; Liu, C. Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 photocatalyst by response surface methodology. J. Environ. Sci. 2010, 22, 1281–1289.
  • Ohtani, B. Titania photocatalysis beyond recombination: A critical review. Catalysts 2013, 3, 942–953.
  • Habibi, M. H.; Hassanzadeh, A.; Mahdavi, S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, J. Photochem. Photobiol. A: Chem. 2005, 172, 89–96.
  • Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manage. 2011, 92, 311–330.
  • Olya, M. E.; Pirkarami, A.; Soleimani, M.; Bahmaei, M. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: Mechanism and economical studies. J. Environ. Manage. 2013, 121, 210–219.
  • Samudro, G.; Mangkoedihardjo, S. Review on BOD, COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels. Int. J. Acad. Res. 2010, 2, 235–239.
  • Bansal, P.; Singh, D.; Sud, D. Photocatalytic degradation of azo dye in aqueous TiO2 suspension: Reaction pathway and identification of intermediates products by LC/MS. Sep. Purifi. Technol. 2010, 72(3), 357–365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.