Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 5
126
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters

, , , , &
Pages 425-433 | Received 13 Aug 2015, Published online: 28 Jan 2016

References

  • Baerlocher, Ch.; McCusker, L.B.; Olson, D.H. Atlas of zeolite framework types, 6th ed.; Elsevier: Amsterdam, 2007; 8–365.
  • Wise, W.S. Handbook of natural zeolites; Colella, C., Ed; De Frede. Editore: Napoli, 2013; 3–332.
  • Gazola, F.C.; Pereira, M.R.; Barros, M.A.S.D.; Silva, E.A.; Arroyo, P.A. Removal of Cr in fixed bed using zeolite NaY. Chem. Eng. J. 2006, 117, 253–261.
  • Figueiredo, H.; Silva, B.; Quintelas, C.; Neves, I.C.; Tavares, T. Effect of the supporting zeolite structure on Cr biosorption: Performance of a single-step reactor and of a sequential batch reactor – a comparison study. Chem. Eng. J. 2010, 163, 22–27.
  • Kiser, J.R.; Manning, B.A. Reduction and immobilization of chromium (VI) by iron(II)-treated faujasite. J. Hazard. Mater. 2010, 174, 167–174.
  • Figueiredo, H.; Silva, B.; Quintelas, C.; Pereira, M.; Neves, I.C.; Tavares, T. Biosorption of hexavalent chromium based on modified Y zeolites obtained by alkali-treatment. Environ. Eng. Manag. J. 2010, 9, 305–311.
  • Foldesová, M.; Dillinger, P.; Lukáč, P. Adsorption and desorption of Cr(III) on natural and chemically modified Slovak zeolites. J. Radioanal. Nucl. Chem. 2000, 245, 435–439.
  • García, R.; Cid, R.; Arriagada, R. Retención de Cr(III) y Hg(II) en zeolitas. Influencia de la naturaleza de la zeolita y de variables del proceso. Bol. Soc. Chil. Quím. 1999, 44, 435–442.
  • Liguori, B.; Cassese, A.; Colella, C. Safe immobilization of Cr(III) in heat-treated zeolite tuff compacts. J. Hazard. Mater. 2006, 137, 1206–1210.
  • Inglezakis, V.J.; Loizidou, M.D. Ion exchange of some heavy metal ions from polar organic solvents into zeolites. Desalination 2007, 211, 238–248.
  • Chmielewská, E. An update of zeolitic and other traditional adsorption and ion exchange materials in water cleanup processes. In Handbook of Natural Zeolites; Inglezakis V.J.; Zorpas, A.A., Eds.; Bentham Science Publishers: Oak Park, 2012; 436–452.
  • Barrer, R.M.; Klinowski, J. Ion exchange in mordenite. J. Chem. Soc., Faraday Trans. 1974, 70, 2362–2367.
  • Rivera, A.; Rodríguez-Fuentes, G.; Altshuler, E. Time evolution of a natural clinoptilolite in aqueous medium: conductivity and pH experiments. Microp. Mesopor. Mater. 2000, 40, 173–179.
  • Rodríguez-Iznaga, I. Modification of natural clinoptilolite to the treatment of residuals from nickel industry; PhD Thesis, IMRE, University of Havana, Cuba, 2002; 44–87.
  • Silva, B.; Figueiredo, H.; Neves, I.C.; Tavares, T. The role of pH on Cr(VI) reduction and removal by Arthrobacter viscosus. Int. J. Chem. Biol. Eng. 2009, 2, 100–103.
  • Valix, M.; Cheung, W.H.; Zhang, K. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J. Hazard. Mater. 2006, 135, 395–405.
  • Yanming, S.; Deyi, W.; Dalei, Z.; Xiangyong, Z.; Zhanbo, H.; Hainan, K. Factors affecting the sorption of trivalent chromium by zeolite synthesized from coal fly ash. J. Coll. Interface Sci. 2008, 322, 13–21.
  • Basaldella, E.; Vázquez, P.; Iucolano, F.; Caputo, D. Chromium removal from water using LTA zeolites: Effect of pH. J. Coll. Interf. Sci. 2007, 313, 574–578.
  • Wang, Q.; Qian, H.; Yang, Y.; Zhang, Z.; Naman, C.; Xu, X. Reduction of hexavalent chromium by carboximethyl cellulose-stabilized zero-valent iron nanoparticles. J. Contaminant Hydrology. 2010, 114, 35–42.
  • Covarrubias, C.; García, R.; Arriagada, R.; Yánez, J.; Garland, M.T. Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Micropor. Mesopor. Mater. 2006, 88, 220–231.
  • Figueiredo, H.; Silva, B.; Quintelas, C.; Raposo, M.M.M.; Parpot, P.; Fonseca, A.M.; Lewandowska, A.E.; Bañares, M.A.; Neves, I.C.; Tavares, T. Immobilization of chromium complexes in zeolite Y obtained from biosorbents: synthesis, characterization and catalytic behavior. Appl. Catal. B: Environ. 2010, 94, 1–7.
  • Figueiredo, H.; Silva, B.; Raposo, M.M.M.; Fonseca, A.M.; Neves, I.C.; Quintelas, C.; Tavares, T. Immobilization of Fe(III) complexes of pyridazine derivatives prepared from biosorbents supported on zeolites. Micropor. Mesopor. Mater. 2008, 109, 163–171.
  • Manning, B.A.; Kiser, J.R.; Kwon, H.C.; Kanel, S.R. Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ. Sci. Technol. 2007, 41, 586–592.
  • Deyi, W.; Yanming, S.; Shengbing, H.; Xinze, W.; Chunjie, L.; Hainan, K. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J. Hazard. Mater. 2008, 155, 415–423.
  • Córdova-Rodríguez, V.; Rodríguez-Iznaga, I.; Tito-Ferro, D.; Acosta-Chávez, R. Treatment of the fiber cement manufacturers′ waste liquor using Palmarito de Cautos natural zeolite minerals. Revista Minería y Geología 2013, 29, 42–59.
  • Tito-Ferro, D.; Rodríguez-Iznaga, I.; Concepción-Rosabal, B.; Chávez-Rivas, F.; Córdova-Rodríguez, V.; Rizo-Beyra, R. Presence of iron in zeolitic rocks in Palmarito de Cauto deposit: separation and caracterization of magnetic phases. Revista Minería y Geología 2011, 27, 22–37.
  • Günay, A.; Arslankaya, E.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371.
  • Zeng, Y.; Woo, H.; Lee, G.; Park, J. Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite. Desalination 2010, 257, 102–109.
  • Vaca, M.M.; López, C.R.; Gehr, R.; Jimenez, C.B.E.; Alvarez, P.J.J. Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange. Water Res. 2001, 35, 373–378.
  • Rodríguez-Fuentes, G.; De Ménorval, L.C.; Reguera, E.; Chávez-Rivas, F. Solid state multinuclear NMR study of iron species in natural and modified clinoptilolite from Tasajera deposit (Cuba). Microp. Mesopor. Mater. 2008, 111, 577–590.
  • Rodríguez-Iznaga, I.; Rodríguez-Fuentes, G.; Benítez-Aguilar, A. The role of carbonate ions in the ion-exchange Ni2+ = 2NH4+ in natural clinoptilolite. Microp. Mesopor. Mater. 2000, 41, 129–136.
  • Rodríguez-Iznaga, I.; Gómez, A.; Rodríguez-Fuentes, G.; Benítez-Aguilar, A.; Serrano-Ballán, J. Natural clinoptilolite as an exchanger of Ni2+ and NH4+ ions under hydrothermal conditions and high ammonia concentration. Micropor. Mesopor. Mater. 2002, 53, 71–80.
  • Céspedes-Ortiz, M.; Rodríguez-Iznaga, I.; Petranovskii, V.; Rizo-Beyra, R.; Aguilera-Domínguez, L. Natural zeolites of different Cuban deposits: compositions and chemical and thermal stability. Revista Cubana de Química 2011, 23, 80–88.
  • Shinzato, M.C.; Montanheiro, T.J.I.; Valdecir de Assis, J.; Andrade, S.; Yamamoto, J.K. Removal of Pb2+ and Cr3+ from aqueous solution by natural zeolites associated with eruptive rocks from the serrageral formation. Paraná sedimentary basin. Química Nova 2009, 32, 1–11.
  • De Barros, M.A.S.D.; Machado, N.R.C.F.; Alves, F.V.; Sousa-Aguiar, E.F. Ion exchange mechanism of Cr3+ on naturally occurring clinoptilolite. Brazil. J. Chem. Eng. 1997, 14, 22–28.
  • Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; John Wiley and Sons: New York, 1988; 679–690.
  • Pauling L. General Chemistry; Dover Publication, Inc., New York, 1988; 229–273.
  • Leyva-Ramo, R.; Fuentes-Rubio, L.; Guerrero-Coronado, R.M.; Mendoza-Barron, J. Adsorption of trivalent chromium from aqueous solutions onto activated carbon. J. Chem. Tech. Biotech. 1995, 62, 64–67.
  • Nightingale, E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387.
  • Roque-Malherbe, R.; Díaz-Aguíla, C.; Reguera, E.; Fundora, J.F.; López-Colado, L.; Hernández, M. The state of iron in natural zeolites: a Mossbauer study. Zeolites 1990, 10, 685–689.
  • Marco, J.F.; García, M.; Garcedo, J.R.; González-Carreño, T.; Arcoya, A.; Seoanne, X.L. On the state of iron in a clinoptilolite. Hyperfine Inter. 1995, 95, 53–70.
  • Stylianou, M.A. Natural zeolites in medicine. In Handbook of Natural Zeolites; Inglezakis, V.J.; Zarpas, A.A., Eds.; Bentham Science Publishers, 2012; 317–334.
  • Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. Removal of heavy metals from mine waters by natural zeolites. Environ. Sci. Technol. 2005, 39, 4606–4613.
  • Verboekend, D.; Perez-Ramırez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 2011, 1, 879–890.
  • Biemelt, T.; Selzer, C.; Schmidt, F.; Mondin, G.; Seifert, A.; Pinkert, K.; Spange, S.; Gemming, T.; Kaskel, S. Hierarchical porous zeolite ZSM-58 derived by desilication and desilication re-assembly. Micropor. Mesopor. Mat. 2014, 187, 114–124.
  • Silaghi, M.Ch.; Chizallet, C.; Raybaud, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Micropor. Mesopor. Mat. 2014, 191, 82–96.
  • Atkins, P.W.; de Paula, J. Physical Chemistry, 7th ed.; W. H. Freeman and Company: New York, 2002; 753–754.
  • Newman, A.C.D.; Brown, G. The chemical constitution of clays. In Chemistry of the Clays and Clay Minerals; Newman, A.C.D., Ed.; Mineralogical Society, Monograph 6; Longman Scientific and Technical: Harlow, England, 1987; 1–128.
  • Rabilero-Bouza, A.C. Contribution to the use of natural pozzolana in the production of cements and other agglomerates; PhD Thesis, University of Oriente, Cuba, 1996; 50–55.
  • Flanigen, E.M. Structural analysis by infrared spectroscopy. In Zeolite Chemistry and Catalysis; Rabo, J.A., Ed.; ACS Monograph: Washington DC, 1976; 80–117.
  • Nyquist, R.; Kagel, R. Infrared Spectra of Inorganic Compounds (3800–45 cm−1); 2nd Printing; Academic Press: New York and London, 1973; 74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.