Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 4
130
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports

, , &
Pages 372-377 | Received 14 Oct 2014, Published online: 27 Feb 2015

References

  • Robles-Vargas, D.; Montoya-Castillo, S.M.; Avelar-González, F.J.; Jauregui-Rincón, J.; Rodríguez-Valadez, F.J.; Rico-Martínez, R. Assessment of the quality and toxicity of the discharges of a wastewater treatment plant and alternatives to improve its operation. J. Environ. Sci. Health. A 1994, 47, 589–597.
  • Zhao, G.; Lu, X.; Zhou, Y. Aniline degradation in aqueous solution by UV-aeration and UV-micro O3 processes: Efficiency, contribution of radicals and byproducts. Chem. Eng. J. 2013, 229, 436–443.
  • Beltrán, F.J.; Encinar, J.M.; Alonso, M.A. Nitroaromatic hydrocarbon ozonation in water. 1. Single ozonation. Ind. Eng. Chem. Res. 1998, 37, 25–31.
  • Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Comparison of different advanced oxidation processes for phenol degradation. Water Res. 2002, 36, 1034–1042.
  • Sharma, S.; Mukhopadhyay, M.; Murthy, Z.V.P. Treatment of chlorophenols from wastewaters by advanced oxidation processes. Sep. Purif. Rev. 2012, 42, 263–295.
  • de Sena, R.F.; Moreira de, F.P.M.; José, H.J. Assessment of polyacrylamide degradation using advanced oxidation processes and ferrate(VI) oxidation. Chem. Eng. Commun. 2013, 200, 235–252.
  • Dvořák, L.; Lederer, T.; Jirků, V.; Masák, J.; Novák, L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Proc. Biochem. 2014, 49, 102–109.
  • O’Brien, J.; O’Dwyer, T.F.; Curtin, T. A novel process for the removal of aniline from wastewaters. J. Hazard. Mater. 2008, 159, 476–482.
  • Sarasa, J.; Cortés, S.; Ormad, P.; Gracia, R.; Ovelleiro, J.L. Study of the aromatic by-products formed from ozonation of anilines in aqueous solution. Water Res. 2002, 36, 3035–3044.
  • Ersoäz, G.; Atalay, S. Kinetic modeling of the removal of aniline by low-pressure catalytic wet air oxidation over a nanostructured Co3O4/CeO2 catalyst. Ind. Eng. Chem. Res. 2011, 50, 310–315.
  • Gomes, H.T.; Machado, B.; Ribeiro, A.; Moreira, I.; Rosário, M.; Silva, A.; Figueiredo, J.L.; Faria, J.L. Catalytic properties of carbon materials for wet oxidation of aniline. J. Hazard. Mater. 2008, 159, 420–426.
  • Kim, K.; Ihm, S. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J. Hazard. Mater. 2011, 186, 16–34.
  • Levi, R.; Milman, M.; Landau, M.V.; Brenner, A.; Herskowitz, M. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst. Environ. Sci. Technol. 2008, 42, 5165–5170.
  • Morales-Torres, S.; Silva, A.; Maldonado-Hódar, F.; Machado, B.; Pérez-Cadenas, A.; Faria, J.L.; Figueiredo, J.L.; Carrasco-Marín, F. Pt-catalysts supported on activated carbons for catalytic wet air oxidation of aniline: activity and stability. Appl. Catal. B. 2011, 105, 86–94.
  • Sotelo, J.L.; Ovejero, G.; Delgado, J.A.; Martinez, I. Adsorption of lindane from water onto GAC: effect of carbon loading on kinetic behavior. Chem. Eng. J. 2002, 87, 111–120.
  • Ovejero, G.; Sotelo, J.L.; Martínez, F.; Melero, J.A.; Milieni, A. Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3perovskite catalyst. Appl. Catal., B. 2004, 47, 281–294.
  • Garcia, J.; Gomes, H.T.; Serp, Ph.; Kalck, Ph.; Figueiredo, J.L.; Faria, J.L. Platinum catalysts supported on MWNT for catalytic wet air oxidation of nitrogen containing compounds. Catal. Today 2005, 102–103, 101–107.
  • Garcia, J. Gomes, H.T.; Serp, Ph.; Kalck, Ph.; Figueiredo, J.L.; Faria, J.L. Carbon nanotubes supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon 2006, 44, 2384–2391.
  • Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; Galán, J.; García, J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014, 240, 443–453.
  • Serp, Ph.; Corrias, M.; Kalck, Ph. Carbon nanotubes and nanofibers in catalysis. Appl. Catal., A. 2003, 253, 337–358.
  • Ovejero, G.; Sotelo, J.L.; Romero, M.D.; Rodríguez, A.; Ocaña, M.A.; Sanz, R.; Garcia, J. Multiwalled carbon nanotubes for liquid phase oxidation: Functionalization, characterization and catalytic activity. Ind. Eng. Chem. Res. 2006, 45, 2206–2212.
  • Kurniawan, T.A.; Sillanpää, M.E.T.; Sillanpää, M. Nanoadsorbents for remediation of aquatic environment: local and practical solutions for global water pollution problems. Crit. Rev. Env. Sci. Tec. 2012, 42, 1233–1295.
  • Fuente, A.M.; Pulgar, G.; González, F.; Pesquera, C.; Blanco, C. Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation. Appl. Catal., A. 2001, 208, 35–46.
  • Calvino-Casilda, V.; López-Peinado, A.J., Durán-Valle, C.J., Martín-Aranda, R.M. Last decade of research on activated carbons as catalytic support in chemical processes. Catal. Rev. 2010, 52, 325–380.
  • Mohamed, W.T.; Ghani, S.A.; Rasheed, S.M. Fe/Activated carbon as a catalyst in wet oxidation of phenolic compounds in a trickle bed reactor. Energ. Source Part A. 2013, 35, 299–311.
  • Machado, B.F.; Gomes, H.T.; Serp, Ph.; Kalck, Ph.; Figueiredo, J.L.; Faria, J.L. Carbon xerogel supported noble metal catalysts for fine chemical applications. Catal. Today 2010, 149, 358–364.
  • Standard Methods for the Examination of Water and Wastewater. 21st ed, American Public Health Association/American Water Works Association/Water Environment Federation: Washington DC, 2005.
  • Moreno-Castilla, C.; Carrasco-Marín, F.; Maldonado-Hódar, F.J.; Rivera-Utrilla, J. Effects of non-oxidant and oxidant acid treatment on the surface properties of an activated carbon with very low ash content. Carbon 1998, 36, 145–151.
  • Shinohara, O.; Kawasaki, N.; Nakamura, T.; Araki, M.; Tanada, S. Relationship between surfaces modified activated carbons and volatile chlorinated hydrocarbons. Toxicol. Environ. Chem. 2010, 77, 151–158.
  • Su, C.-I.; Peng, C.-C.; Lu, C.-H.; Wang, C.-M.; Shih, W.-C. Effect of activator on characteristics of carbon fiber absorbents. Polym. Plast. Technol. 2012, 51, 766–771.
  • Stevenson, S.A.; Dumesic, J.A.; Baker, R.T.K.; Ruckenstein, E. (Eds). Catalysis, sintering, and redispersion. Van Nostrand Reinhold, New York, USA, 1987.
  • Ovejero, G.; Rodríguez, A.; Vallet, A.; García, J. Studies in catalytic wet air oxidation as a process to destroy CI Basic Yellow 11 in aqueous stream over platinum catalyst. Color. Technol. 2011, 127, 10–17.
  • Ovejero, G.; Sotelo, J.L.; Garcia, J.; Rodríguez, A. Catalytic removal of phenol from aqueous solutions in a trickle bed reactor. J. Chem. Technol. Biotechnol. 2005, 80, 406–412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.