Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 9
126
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Degradation of aqueous methylene blue using an external loop airlift sonophotoreactor: Statistical analysis and optimization

, &
Pages 722-735 | Received 26 Oct 2015, Published online: 29 Apr 2016

References

  • Spadaro, J.T.; Isabelle, L.; Renganathan, V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol. 1994, 28, 1389–1393.
  • Vinodgopal, K.; Wynkoop, D.E.; Kamat, P.V. Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, Acid Orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 1996, 30, 1660–1666.
  • Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B. 2004, 49, 1–14.
  • Daneshvar, N.; Salari, D.; Khataee, A.R., Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A. 2003, 157, 111–116.
  • Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B. 2001, 31, 145–157.
  • Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.—M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B. 2002, 39, 75–90.
  • Sun, S.; Wang, W.; Zhou, L.; Xu, H. Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4. Ind. Eng. Chem. Res. 2009, 48, 1735–1739.
  • Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones-Bolaños, E. Combined anaerobic-aerobic and UV/H2O2 processes for the treatment of synthetic slaughterhouse wastewater. J. Environ. Sci. Heal. A. 2013, 48(9), 1122–1135.
  • Bustillo-Lecompte, C.F.; Knight, M.; Mehrvar, M., Assessing the performance of UV/H2O2 as a pretreatment process in TOC removal of an actual petroleum refinery wastewater and its inhibitory effects on activated sludge, Can. J. Chem. Eng. 2015, 93(5), 798–807.
  • Ghafoori, S.; Mehrvar, M.; Chan, P.K., A statistical experimental design approach for photochemical degradation of aqueous polyacrylic acid using photo-Fenton-like process, Polym. Degrad. Stabil. 2014, 110, 492–497.
  • Ghafoori, S.; Mowla, A.; Jahani, R.; Mehrvar, M.; Chan, P.K., Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling, J. Environ. Manage. 2015, 150, 128–137.
  • Pera-Titus, M.; García-Molina, V.; Baños, M.A.; Giménez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B. 2004, 47, 219–256.
  • Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 2004, 8, 553–597.
  • Ince, N.H.; Tezcanli, G.; Belen, R.K.; Apikyan, I.G. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B. 2001, 29, 167–176.
  • Mohajerani, M.; Mehrvar, M.; Ein-Mozaffari, F. CFD analysis of two-phase turbulent flow in internal airlift reactors. Can. J. Chem. Eng. 2012, 90, 1612–1631.
  • Mohajerani, M.; Mehrvar, M.; Ein-Mozaffari, F. Recent achievements in combination of ultrasonolysis and other advanced oxidation processes for wastewater treatment. Int. J. Chem. Reactor Eng. 2010, 8, 1–78.
  • Mohajerani, M.; Mehrvar, M., Ein-Mozaffari, F. An overview of the integration of advanced oxidation technologies and other processes for wastewater treatment. Int. J. Eng. 2009, 3, 120–146.
  • Sadri Moghaddam, S.; Alvai Moghaddam, M.R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization thorough response surface methodology. J. Hazard. Mater. 2010, 175, 651–657.
  • Liu, H.-L.; Chiou, Y.-R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem. Eng. J. 2005, 112, 173–179.
  • Kasiri, M.B.; Aleboyeh, H.; Aleboyeh, A. Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ. Sci. Technol. 2008, 42, 7970–7975.
  • Arslan-Alaton, I.; Tureli, G.; Olmez-Hanci, T., Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J. Photochem. Photobiol. A. 2009, 202, 142–153.
  • Salari, D.; Daneshvar, N.; Aghazadeh, F.; Khataee, A.R. Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. J. Hazard. Mater. 2005, 125, 205–210.
  • Himmelblau, D.M., Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 2000, 17, 373–392.
  • Mohajerani, M.; Mehrvar, M.; Ein-Mozaffari, F. Nonlinear modeling for the degradation of aqueous azo dyes by combined advanced oxidation processes using artificial neural networks. Chem. Prod. Process Model. 2011, 6, 1–29.
  • Pareek, V.K.; Brungs, M.P.; Adesina, A.A.; Sharma, R. Artificial neural network modeling of a multiphase photodegradation system. J. Photochem. Photobiol. A. 2002, 149, 139–146.
  • APHA. Standards Methods for the Examination of Water and Wastewater. Water Environment Federation/American Water Association/American Public Health Association: Washington, D.C., 1998.
  • Zhang, K.; Zhang, F.J.; Chen, M.L.; Oh, W.C. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts. Ultrason. Sonochem. 2011, 18, 765–772.
  • Minero, C.; Lucchiari, M.; Vione, D.; Maurino, V. Fe(III)-enhanced sonochemical degradation of methylene blue in aqueous solution. Environ. Sci. Technol. 2005, 39, 8936–8942.
  • Gulshan, F.; Yanagida, S.; Kameshima, Y.; Isobe, T.; Nakajima, A.; Okada, K. Various factors affecting photodecomposition of methylene blue iron-oxides in an oxalate solution. Water Res. 2010, 44, 2876–2884.
  • Kanungo, S.B.; Parida, K.M.; Sant, B.R. Studies on MnO2-III. The kinetics and the mechanism for the catalytic decomposition of H2O2 over different crystalline modifications of MnO2. Electrochim. Acta, 1981, 26, 1157–1167.
  • Mehrvar, M.; Anderson, W.A.; Moo-Young, M. Photocatalytic degradation of aqueous organic solvents in the presence of hydroxyl radical scavengers. Int. J. Photoenergy. 2001, 3, 187–191.
  • Stefan, M.I.; Hoy, A.R.; Bolton, J. R. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ. Sci. Technol. 1996, 30, 2382–2390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.