Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 11
137
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

Air–water partition coefficients for a suite of polycyclic aromatic and other C10 through C20 unsaturated hydrocarbons

&
Pages 938-953 | Received 20 Jan 2016, Published online: 23 Jun 2016

References

  • Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20(6), 243–248.
  • Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water. Air. Soil Pollut. 1991, 60, 279–300.
  • Finlayson-Pitts, B.J.; Pitts, J.N. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276(5315), 1045–1051.
  • Mastral, A.M.; Callen, M.S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ. Sci. Technol. 2000, 34(15), 3051–3057.
  • Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-derived polycyclic aromatic hydrocarbons in the environment: A review. Environ. Forensics 2005, 6(2), 109–131.
  • Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42(13), 2895–2921.
  • Mastrangelo, G.; Fadda, E.; Marzia, V. Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect. 1996, 104(11), 1166–1170.
  • Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169(1–3), 1–15.
  • Sverdrup, L.E.; Nielsen, T.; Krogh, P.H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ. Sci. Technol. 2002, 36(11), 2429–2435.
  • Wagrowski, D.M.; Hites, R.A. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ. Sci. Technol. 1997, 31(1), 279–282.
  • Meador, J.P.; Stein, J.E.; Reichert, W.L.; Varanasi, U. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Reviews of Environmental Contamination and Toxicology; Springer: New York, 1995; 79–165.
  • Edwards, N.T. Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment: A review. J. Environ. Qual. 1983, 12(4), 427–441.
  • D'Adamo, R.; Pelosi, S.; Trotta, P.; Sansone, G. Bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in aquatic organisms. Mar. Chem. 1997, 56(1–2), 45–49.
  • Andersson, J.T.; Achten, C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl. Aromat. Compd. 2015, 35(2–4), 330–354.
  • Odabasi, M.; Sofuoglu, A.; Vardar, N.; Tasdemir, Y.; Holsen, T.M. Measurement of dry deposition and air-water exchange of polycyclic aromatic hydrocarbons with the water surface sampler. Environ. Sci. Technol. 1999, 33(3), 426–434.
  • Gigliotti, C.L.; Brunciak, P.A.; Dachs, J.; Glenn, T.R.; Nelson, E.D.; Totten, L.A.; Eisenreich, S.J. Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor Estuary. Environ. Toxicol. Chem. 2002, 21(2), 235–244.
  • Hsu, Y.-M.; Harner, T.; Li, H.; Fellin, P. PAH measurements in air in the Athabasca oil sands region. Environ. Sci. Technol. 2015, 49(9), 5584–5592.
  • Zhang, L.; Cheng, I.; Muir, D.; Charland, J.-P. Scavenging ratios of polycyclic aromatic compounds in rain and snow in the Athabasca oil sands region. Atmos. Chem. Phys. 2015, 15(3), 1421–1434.
  • Kelly, E.N.; Short, J.W.; Schindler, D.W.; Hodson, P.V.; Ma, M.; Kwan, A.K.; Fortin, B.L. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proc. Natl. Acad. Sci. 2009, 106(52), 22346–22351.
  • Parajulee, A.; Wania, F. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model. Proc. Natl. Acad. Sci. 2014, 111(9), 3344–3349.
  • Galarneau, E.; Hollebone, B.P.; Yang, Z.; Schuster, J. Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds. Atmos. Environ. 2014, 97, 332–335.
  • Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110(6), 2822–2827.
  • Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000, 112(15), 6532–6542.
  • Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 2007, 127(12), 124105.
  • Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126(8), 084108.
  • Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
  • Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37(2), 785–789.
  • Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157(3), 200–206.
  • Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98(7), 5648–5652.
  • Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120(1–3), 215–241.
  • Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54(2), 724–728.
  • Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56(5), 2257–2261.
  • Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28(3), 213–222.
  • McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72(10), 5639–5648.
  • Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72(1), 650–654.
  • Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113(18), 6378–6396.
  • Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105 (8), 2999–3093.
  • Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102(11), 1995–2001.
  • Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24(6), 669–681.
  • Allouche, A.-R. Gabedit: A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011, 32(1), 174–182.
  • Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012, 4(1), 17.
  • Yoshioka, K. KyPlot as a tool for graphical data analysis. In Compstat: Proceedings in Computational Statistics; Härdle, W., Rönz, B., Eds.; Springer: New York, 2002; 37–46.
  • Rayne, S.; Forest, K. Estimated gas-phase standard state enthalpies of formation for organic compounds using the Gaussian-4 (G4) and W1BD theoretical methods. J. Chem. Eng. Data 2010, 55, 5359–5364.
  • Rayne, S.; Forest, K. Reply to Comments by O. V. Dorofeeva on J. Chem. Eng. Data 2010, 55, 5359–5364. J. Chem. Eng. Data 2011, 56, 684–685.
  • Nicolaides, A.; Rauk, A.; Glukhovtsev, M.N.; Radom, L. Heats of formation from G2, G2(MP2), and G2(MP2,SVP) total energies. J. Phys. Chem. 1996, 100(44), 17460–17464.
  • Notario, R.; Castaño, O.; Abboud, J.-L.M.; Gomperts, R.; Frutos, L.M.; Palmeiro, R. Organic Thermochemistry at high ab initio levels. 1. A G2(MP2) and G2 study of cyclic saturated and unsaturated hydrocarbons (including aromatics). J. Org. Chem. 1999, 64(25), 9011–9014.
  • Fabian, W.M.F. Accurate thermochemistry from quantum chemical calculations? Monatshefte Für Chem. Chem. Mon. 2008, 139(4), 309–318.
  • Saeys, M.; Reyniers, M.-F.; Marin, G.B.; Van Speybroeck, V.; Waroquier, M. Ab initio calculations for hydrocarbons: Enthalpy of formation, transition state geometry, and activation energy for radical reactions. J. Phys. Chem. A 2003, 107(43), 9147–9159.
  • van Speybroeck, V.; Gani, R.; Meier, R.J. The calculation of thermodynamic properties of molecules. Chem. Soc. Rev. 2010, 39(5), 1764–1779.
  • Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13(12), 1173–1213.
  • Korth, M. Third-generation hydrogen-bonding corrections for semiempirical QM methods and force fields. J. Chem. Theory Comput. 2010, 6(12), 3808–3816.
  • Korth, M.; Pitoňák, M.; Řezáč, J.; Hobza, P. A transferable H-bonding correction for semiempirical quantum-chemical methods. J. Chem. Theory Comput. 2010, 6(1), 344–352.
  • Wheeler, S.E.; Houk, K.N.; von Ragué Schleyer, P.; Allen, W.D. A heirarchy of homodesmotic reactions for thermochemistry. J. Am. Chem. Soc. 2009, 131(7), 2547–2560.
  • Rayne, S.; Forest, K. Gas phase isomerization enthalpies of organic compounds: A semiempirical, density functional theory, and ab initio post-Hartree–Fock theoretical study. J. Mol. Struct. THEOCHEM 2010, 948(1–3), 102–107.
  • Rayne, S.; Forest, K. Gas-phase enthalpies of formation, acidities, and strain energies of the [m, n]polyprismanes (m≥2; n=3–8; m × n≤16): A CBS-Q//B3, G4MP2, and G4 theoretical study. Theor. Chem. Acc. 2010, 127(5–6), 697–709.
  • Rayne, S.; Forest, K. A G4MP2 and G4 theoretical study into the thermochemical properties of explosophore substituted tetrahedranes and cubanes. Propellants Explos. Pyrotech. 2011, 36(5), 410–415.
  • Rayne, S.; Forest, K. Computational note on a G4MP2 study into the gas phase enthalpies of formation and isomerization for the (CH)2n (n=1–6) isomers. J. Mol. Struct. THEOCHEM 2010, 948(1–3), 111–112.
  • Rayne, S.; Forest, K. Gas phase enthalpies of formation, isomerization, and disproportionation of mono- through tetra-substituted tetrahedranes: A G4(MP2)/G4 theoretical study. Comput. Theor. Chem. 2016, 1075, 30–37.
  • Chase, M.W.; Davies, C.A.; Downey, J.R.; Frurip, D.J.; McDonald, R.A.; Syverud, A.N. NIST JANAF Thermochemical Tables, Version 1.0, NIST Standard Reference Database 13; Gaithersburg, MD, USA, 1985.
  • Manion, J.A. Evaluated enthalpies of formation of the stable closed shell C1 and C2 chlorinated hydrocarbons. J. Phys. Chem. Ref. Data 2002, 31(1), 123–172.
  • Cox, J.D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: New York, NY, USA, 1970.
  • Prosen, E.J.; Rossini, F.D. Heats of combustion and formation of the paraffin hydrocarbons at 25 C. J. Res. Natl. Bur. Stand. 1945, 34(3), 263–269.
  • Pittam, D.A.; Pilcher, G. Measurements of heats of combustion by flame calorimetry. Part 8. Methane, ethane, propane, n-butane and 2-methylpropane. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1972, 68, 2224–2229.
  • Wagman, D.D.; Kilpatrick, J.E.; Pitzer, K.S.; Rossini, F.D. Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,500 K. J. Res. Natl. Bur. Stand. 1945, 35, 467–496.
  • Prosen, E.J.; Maron, F.W.; Rossini, F.D. Heats of combustion, formation, and isomerization of ten C4 hydrocarbons. J. Res. Natl. Bur. Stand. 1951, 46(2), 106–112.
  • Prosen, E.J.; Rossini, F.D. Heats of formation and combustion of 1,3-butadiene and styrene. J. Res. Natl. Bur. Stand. 1945, 34, 59–63.
  • Good, W.D. The enthalpies of combustion and formation of the isomeric pentanes. J. Chem. Thermodyn. 1970, 2(2), 237–244.
  • Pilcher, G.; Chadwick, J.D.M. Measurements of heats of combustion by flame calorimetry. Part 4. n-Pentane, isopentane, neopentane. Trans. Faraday Soc. 1967, 63, 2357–2361.
  • Furuyama, S.; Golden, D.M.; Benson, S.W. Thermochemistry of the gas phase equilibria i-C3H7I = C3H6 + HI, n-C3H7I = i-C3H7I, and C3H6 + 2HI = C3H8 + I2. J. Chem. Thermodyn. 1969, 1(4), 363–375.
  • Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 2008, 37(4), 1855–1996.
  • Guthrie, J.P.; Povar, I. A test of various computational solvation models on a set of “difficult” organic compounds. Can. J. Chem. 2009, 87(8), 1154–1162.
  • Takano, Y.; Houk, K.N. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 2005, 1(1), 70–77.
  • Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 2006, 110(32), 16066–16081.
  • Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. SM6: A density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J. Chem. Theory Comput. 2005, 1(6), 1133–1152.
  • Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on the generalized born approximation with asymmetric descreening. J. Chem. Theory Comput. 2009, 5(9), 2447–2464.
  • Pliego, J.R.; Riveros, J.M. Gibbs energy of solvation of organic ions in aqueous and dimethyl sulfoxide solutions. Phys. Chem. Chem. Phys. 2002, 4(9), 1622–1627.
  • Rayne, S.; Forest, K. Comparative semiempirical, ab initio, and density functional theory study on the thermodynamic properties of linear and branched perfluoroalkyl sulfonic acids/sulfonyl fluorides, perfluoroalkyl carboxylic acid/acyl fluorides, and perhydroalkyl sulfonic acids, alkanes, and alcohols. J. Mol. Struct. THEOCHEM 2010, 941(1–3), 107–118.
  • US EPA. Estimation Programs Interface Suite™ for Microsoft® Windows, v4.11; United States Environmental Protection Agency: Washington, DC, USA, 2012.
  • Sander, R. Compilation of Henry's law constants, version 3.99. Atmos. Chem. Phys. 2015, 15, 4399–4981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.