Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 13
267
Views
14
CrossRef citations to date
0
Altmetric
ARTICLES

Quinoline-degrading strain Pseudomonas aeruginosa KDQ4 isolated from coking activated sludge is capable of the simultaneous removal of phenol in a dual substrate system

, , , &
Pages 1139-1148 | Received 04 Mar 2016, Published online: 26 Jul 2016

References

  • Yi, Q.; Yibo, W.; Huiming, Z. Efficacy of pre-treatment methods in the activated sludge removal f refractory compounds in coke-plant wastewater. Water Res. 1994, 28(3), 701–707.
  • Jin, X.; Li, E.; Lu, S.; Qiu, Z.; Sui, Q. Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis. J. Environ. Sci. 2013, 25(8), 1565–1574.
  • Liao, M.; Zhao, Y.; Ning, P.; Cao, H.; Wen, H.; Zhang, Y. Optimal design of solvent blend and its application in coking wastewater treatment process. Ind. Eng. Chem. Res. 2014, 53(39), 15071–15079.
  • Tuo, B.H.; Yan, J.B.; Fan, B.A.; Yang, Z.H.; Liu, J.Z. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresour. Technol. 2012, 107, 55–60.
  • Kilbane, J.J.; Ranganathan, R.; Cleveland, L.; Kayser, K.J.; Ribiero, C.; Linhares, M.M. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl. Environ. Microbiol. 2000, 66(2), 688–693.
  • Wang, C.; Zhang, M.; Cheng, F.; Geng, Q. Biodegradation characterization and immobilized strains' potential for quinoline degradation by Brevundimonas sp. K4 isolated from activated sludge of coking wastewater. Biosci. Biotech. Biochem. 2015, 79(1), 164–170.
  • Zhuang, H.; Han, H.; Xu, P.; Hou, B.; Jia, S.; Wang, D.; Li, K. Biodegradation of quinoline by Streptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles. Biochem. Eng. J. 2015, 99, 44–47.
  • Zhao, G.; Chen, S.; Ren, Y.; Wei, C. Interaction and biodegradation evaluate of m-cresol and quinoline in co-exist system. Int. Biodeterior. Biodegrad. 2014, 86, 252–257.
  • Wang, J.L.; Wu, W.Z.; Zhao, X. Microbial degradation of quinoline kinetics study with Burkholderia picekttii. Biomed. Environ. Sci. 2004, 17, 21–26.
  • Bai, Y.; Sun, Q.; Zhao, C.; Wen, D.; Tang, X. Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp. strain. Biodegradation, 2010, 21(3), 335–344.
  • Zhu, S.N.; Liu, D.Q.; Fan, L.; Ni, J.R. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. J. Hazard. Mater. 2008, 160(2–3), 289–294.
  • Bai, Y.; Sun, Q; Zhao, C.; Wen, D.; Tang, X. Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 2010, 87(5), 1943–1951.
  • Sun, Q.; Bai, Y.; Zhao, C.; Xiao, Y.; Wen, D.; Tang, X. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Bioresour. Technol. 2009, 100(21), 5030–5036.
  • Kulkarni, P. Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR). Bioresour. Technol. 2013, 128, 273–280.
  • Liu, Y.; Hu, T.; Song, Y.; Chen, H.; Lv, Y. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater. J. Biosci. Bioeng. 2015, 120(5), 549–554.
  • Association, A.P.H.; Association, A.W.W.; Federation, W.P.C.; Federation, W.E. Standard methods for the examination of water and wastewater[M]. American Public Health Association, 1915.
  • Lin, Q.; Jianlong, W. Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresour. Technol. 2010, 101(19), 7683–7686.
  • Nordlund, I.; Powlowski, J.; Hagström, Å.; Shingler, V. Conservation of regulatory and structural genes for a multi-component phenol hydroxylase within phenol-catabolizing bacteria that utilize a meta-cleavage pathway. Microbiol. 1993, 139(11), 2695–2703.
  • Duffner, F.M.; Kirchner, U.; Bauer, M.P.; Müller, R. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene. 2000, 256(1), 215–221.
  • Bauer, I.; Beyer, A.; Tshisuaka, B.; Fetzner, S.; Lingens, F. A novel type of oxygenolytic ring cleavage: 2, 4‐oxygenation and decarbonylation of 1H‐3‐hydroxy‐4‐oxoquinaldine and 1H‐3‐hydroxy‐4‐oxoquinoline. FEMS. Microbiol. Lett. 1994, 117(3), 299–304.
  • Dembek, G.; Rommel, T.; Lingens, F.; Höke, H. Degradation of quinaldine by Alcaligenes sp. and by Arthrobacter sp. FEBS. Lett. 1989, 246(1–2), 113–116.
  • He, T.; Li, Z.; Sun, Q.; Xu, Y.; Ye, Q. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour. Technol. 2016, 200, 493–499.
  • Zhang, J.; Wu, P.; Hao, B.; Yu, Z. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 2011, 102(21), 9866–9869.
  • Huang, X.; Li, W.; Zhang, D.; Qin, W. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresour. Technol. 2013, 146, 44–50.
  • Wehrfritz, J.M.; Reilly, A.; Spiro, S.; Richardson, D.J. Richardson. Purification of hydroxylamine oxidase from Thiosphaera pantotropha Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS. lett. 1993, 335(2), 246–250.
  • Crossman, L.C.; Moir, J.W.; Enticknap, J.J.; Richardson, D.J.; Spiro, S. Heterologous expression of heterotrophic nitrification genes. Microbiol. 1997, 143, 3775–3783.
  • Zhang, Q.L.; Liu, Y.; Ai, G.M.; Miao, L.L.; Zheng, H.Y.; Liu, Z.P. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 2012, 108, 35–44.
  • Liu, Y.X.; Li, Y.Q.; Lv, Y.K. Isolation and characterization of a heterotrophic nitrifier from coke plant wastewater. Water Sci. Technol. 2012, 65(11), 2084–2090.
  • Zhao, B.; An, Q.; He, Y.L.; Guo, J.S. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour. Technol. 2012, 116, 379–385.
  • Kariminiaae-Hamedaani, H.-R.; Kanda, K.; Kato, F. Denitrification activity of the bacterium Pseudomonas sp. ASM-2-3 isolated from the Ariake Sea tideland. J. Biosci. Bioeng. 2004, 97(1), 39–44.
  • Weon, S.Y.; Lee, C.W.; Lee, S.I.; Koopman, B. Nitrite inhibition of aerobic growth of Acinetobacter sp. Water Res. 2002, 36, 4471–4476.
  • Wan, C.; Yang, X.; Lee, D.J.; Du, M.; Wan, F.; Chen, C. Aerobic denitrification by novel isolated strain using NO2−-N as nitrogen source. Bioresour. Technol. 2011, 102(15), 7244–7248.
  • Glass, C.; Silverstein, J.; Oh, J. Inhibition of denitrification in activated sludge by nitrite. Water Environ. Res. 1997, 69(6), 1086–1093.
  • Abeling, U.; Seyfried, C. Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite. Water Sci. Technol. 1992, 26(5–6), 1007–1015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.